mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-08-02 10:30:37 +08:00
添加内容
This commit is contained in:
@ -0,0 +1,75 @@
|
||||
# [84. Largest Rectangle in Histogram](https://leetcode.com/problems/largest-rectangle-in-histogram/)
|
||||
|
||||
## 题目
|
||||
|
||||
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
|
||||
|
||||

|
||||
|
||||
|
||||
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
|
||||
|
||||

|
||||
|
||||
|
||||
The largest rectangle is shown in the shaded area, which has area = 10 unit.
|
||||
|
||||
|
||||
|
||||
**Example**:
|
||||
|
||||
```
|
||||
|
||||
Input: [2,1,5,6,2,3]
|
||||
Output: 10
|
||||
|
||||
```
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
给出每个直方图的高度,要求在这些直方图之中找到面积最大的矩形,输出矩形的面积。
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
用单调栈依次保存直方图的高度下标,一旦出现高度比栈顶元素小的情况就取出栈顶元素,单独计算一下这个栈顶元素的矩形的高度。然后停在这里(外层循环中的 i--,再 ++,就相当于停在这里了),继续取出当前最大栈顶的前一个元素,即连续弹出 2 个最大的,以稍小的一个作为矩形的边,宽就是 2 计算面积…………如果停在这里的下标代表的高度一直比栈里面的元素小,就一直弹出,取出最后一个比当前下标大的高度作为矩形的边。宽就是最后一个比当前下标大的高度和当前下标 i 的差值。计算出面积以后不断的更新 maxArea 即可。
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
|
||||
package leetcode
|
||||
|
||||
import "fmt"
|
||||
|
||||
func largestRectangleArea(heights []int) int {
|
||||
maxArea, stack, height := 0, []int{}, 0
|
||||
for i := 0; i <= len(heights); i++ {
|
||||
if i == len(heights) {
|
||||
height = 0
|
||||
} else {
|
||||
height = heights[i]
|
||||
}
|
||||
if len(stack) == 0 || height >= heights[stack[len(stack)-1]] {
|
||||
stack = append(stack, i)
|
||||
} else {
|
||||
tmp := stack[len(stack)-1]
|
||||
fmt.Printf("1. tmp = %v stack = %v\n", tmp, stack)
|
||||
stack = stack[:len(stack)-1]
|
||||
length := 0
|
||||
if len(stack) == 0 {
|
||||
length = i
|
||||
} else {
|
||||
length = i - 1 - stack[len(stack)-1]
|
||||
fmt.Printf("2. length = %v stack = %v i = %v\n", length, stack, i)
|
||||
}
|
||||
maxArea = max(maxArea, heights[tmp]*length)
|
||||
fmt.Printf("3. maxArea = %v heights[tmp]*length = %v\n", maxArea, heights[tmp]*length)
|
||||
i--
|
||||
}
|
||||
}
|
||||
return maxArea
|
||||
}
|
||||
|
||||
```
|
Reference in New Issue
Block a user