mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-08-06 05:34:54 +08:00
添加内容
This commit is contained in:
97
website/content/ChapterFour/0018.4Sum.md
Normal file
97
website/content/ChapterFour/0018.4Sum.md
Normal file
@ -0,0 +1,97 @@
|
||||
# [18. 4Sum](https://leetcode.com/problems/4sum/)
|
||||
|
||||
## 题目
|
||||
|
||||
Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
|
||||
|
||||
**Note**:
|
||||
|
||||
The solution set must not contain duplicate quadruplets.
|
||||
|
||||
**Example**:
|
||||
|
||||
```
|
||||
|
||||
Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.
|
||||
|
||||
A solution set is:
|
||||
[
|
||||
[-1, 0, 0, 1],
|
||||
[-2, -1, 1, 2],
|
||||
[-2, 0, 0, 2]
|
||||
]
|
||||
|
||||
```
|
||||
|
||||
## 题目大意
|
||||
|
||||
给定一个数组,要求在这个数组中找出 4 个数之和为 0 的所有组合。
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
用 map 提前计算好任意 3 个数字之和,保存起来,可以将时间复杂度降到 O(n^3)。这一题比较麻烦的一点在于,最后输出解的时候,要求输出不重复的解。数组中同一个数字可能出现多次,同一个数字也可能使用多次,但是最后输出解的时候,不能重复。例如 [-1,1,2, -2] 和 [2, -1, -2, 1]、[-2, 2, -1, 1] 这 3 个解是重复的,即使 -1, -2 可能出现 100 次,每次使用的 -1, -2 的数组下标都是不同的。
|
||||
|
||||
这一题是第 15 题的升级版,思路都是完全一致的。这里就需要去重和排序了。map 记录每个数字出现的次数,然后对 map 的 key 数组进行排序,最后在这个排序以后的数组里面扫,找到另外 3 个数字能和自己组成 0 的组合。
|
||||
|
||||
第 15 题和第 18 题的解法一致。
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
|
||||
package leetcode
|
||||
|
||||
import "sort"
|
||||
|
||||
func fourSum(nums []int, target int) [][]int {
|
||||
res := [][]int{}
|
||||
counter := map[int]int{}
|
||||
for _, value := range nums {
|
||||
counter[value]++
|
||||
}
|
||||
|
||||
uniqNums := []int{}
|
||||
for key := range counter {
|
||||
uniqNums = append(uniqNums, key)
|
||||
}
|
||||
sort.Ints(uniqNums)
|
||||
|
||||
for i := 0; i < len(uniqNums); i++ {
|
||||
if (uniqNums[i]*4 == target) && counter[uniqNums[i]] >= 4 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[i], uniqNums[i]})
|
||||
}
|
||||
for j := i + 1; j < len(uniqNums); j++ {
|
||||
if (uniqNums[i]*3+uniqNums[j] == target) && counter[uniqNums[i]] > 2 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[i], uniqNums[j]})
|
||||
}
|
||||
if (uniqNums[j]*3+uniqNums[i] == target) && counter[uniqNums[j]] > 2 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[j], uniqNums[j]})
|
||||
}
|
||||
if (uniqNums[j]*2+uniqNums[i]*2 == target) && counter[uniqNums[j]] > 1 && counter[uniqNums[i]] > 1 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[j], uniqNums[j]})
|
||||
}
|
||||
for k := j + 1; k < len(uniqNums); k++ {
|
||||
if (uniqNums[i]*2+uniqNums[j]+uniqNums[k] == target) && counter[uniqNums[i]] > 1 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[i], uniqNums[j], uniqNums[k]})
|
||||
}
|
||||
if (uniqNums[j]*2+uniqNums[i]+uniqNums[k] == target) && counter[uniqNums[j]] > 1 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[j], uniqNums[k]})
|
||||
}
|
||||
if (uniqNums[k]*2+uniqNums[i]+uniqNums[j] == target) && counter[uniqNums[k]] > 1 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[k], uniqNums[k]})
|
||||
}
|
||||
c := target - uniqNums[i] - uniqNums[j] - uniqNums[k]
|
||||
if c > uniqNums[k] && counter[c] > 0 {
|
||||
res = append(res, []int{uniqNums[i], uniqNums[j], uniqNums[k], c})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
Reference in New Issue
Block a user