添加 problem 1175

This commit is contained in:
YDZ
2020-01-06 20:26:27 +08:00
parent c677fc1b9d
commit fc9e0f6f18
3 changed files with 109 additions and 0 deletions

View File

@ -0,0 +1,17 @@
package leetcode
import "sort"
var primes = []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}
func numPrimeArrangements(n int) int {
primeCount := sort.Search(25, func(i int) bool { return primes[i] > n })
return factorial(primeCount) * factorial(n-primeCount) % 1000000007
}
func factorial(n int) int {
if n == 1 || n == 0 {
return 1
}
return n * factorial(n-1) % 1000000007
}

View File

@ -0,0 +1,52 @@
package leetcode
import (
"fmt"
"testing"
)
type question1175 struct {
para1175
ans1175
}
// para 是参数
// one 代表第一个参数
type para1175 struct {
one int
}
// ans 是答案
// one 代表第一个答案
type ans1175 struct {
one int
}
func Test_Problem1175(t *testing.T) {
qs := []question1175{
question1175{
para1175{5},
ans1175{12},
},
question1175{
para1175{99},
ans1175{75763854},
},
question1175{
para1175{100},
ans1175{682289015},
},
}
fmt.Printf("------------------------Leetcode Problem 1175------------------------\n")
for _, q := range qs {
_, p := q.ans1175, q.para1175
fmt.Printf("【input】:%v 【output】:%v\n", p, numPrimeArrangements(p.one))
}
fmt.Printf("\n\n\n")
}

View File

@ -0,0 +1,40 @@
# [1175. Prime Arrangements](https://leetcode.com/problems/prime-arrangements/)
## 题目:
Return the number of permutations of 1 to `n` so that prime numbers are at prime indices (1-indexed.)
*(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)*
Since the answer may be large, return the answer **modulo `10^9 + 7`**.
**Example 1:**
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.
**Example 2:**
Input: n = 100
Output: 682289015
**Constraints:**
- `1 <= n <= 100`
## 题目大意
请你帮忙给从 1 到 n 的数设计排列方案使得所有的「质数」都应该被放在「质数索引」索引从 1 开始)上;你需要返回可能的方案总数。让我们一起来回顾一下「质数」:质数一定是大于 1 的,并且不能用两个小于它的正整数的乘积来表示。由于答案可能会很大,所以请你返回答案 模 mod 10^9 + 7 之后的结果即可。
提示:
- 1 <= n <= 100
## 解题思路
- 给出一个数 n要求在 1-n 这 n 个数中,素数在素数索引下标位置上的全排列个数。
- 由于这一题的 `n` 小于 100所以可以用打表法。先把小于 100 个素数都打表打出来。然后对小于 n 的素数进行全排列,即 n然后再对剩下来的非素数进行全排列即 (n-c)!。两个的乘积即为最终答案。