mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-06 09:23:19 +08:00
Add solution 1631、1691
This commit is contained in:
@ -0,0 +1,108 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"sort"
|
||||
|
||||
"github.com/halfrost/LeetCode-Go/template"
|
||||
)
|
||||
|
||||
var dir = [4][2]int{
|
||||
{0, 1},
|
||||
{1, 0},
|
||||
{0, -1},
|
||||
{-1, 0},
|
||||
}
|
||||
|
||||
// 解法一 DFS + 二分
|
||||
func minimumEffortPath(heights [][]int) int {
|
||||
n, m := len(heights), len(heights[0])
|
||||
visited := make([][]bool, n)
|
||||
for i := range visited {
|
||||
visited[i] = make([]bool, m)
|
||||
}
|
||||
low, high := 0, 1000000
|
||||
for low < high {
|
||||
threshold := low + (high-low)>>1
|
||||
if !hasPath(heights, visited, 0, 0, threshold) {
|
||||
low = threshold + 1
|
||||
} else {
|
||||
high = threshold
|
||||
}
|
||||
for i := range visited {
|
||||
for j := range visited[i] {
|
||||
visited[i][j] = false
|
||||
}
|
||||
}
|
||||
}
|
||||
return low
|
||||
}
|
||||
|
||||
func hasPath(heights [][]int, visited [][]bool, i, j, threshold int) bool {
|
||||
n, m := len(heights), len(heights[0])
|
||||
if i == n-1 && j == m-1 {
|
||||
return true
|
||||
}
|
||||
visited[i][j] = true
|
||||
res := false
|
||||
for _, d := range dir {
|
||||
ni, nj := i+d[0], j+d[1]
|
||||
if ni < 0 || ni >= n || nj < 0 || nj >= m || visited[ni][nj] || res {
|
||||
continue
|
||||
}
|
||||
diff := abs(heights[i][j] - heights[ni][nj])
|
||||
if diff <= threshold && hasPath(heights, visited, ni, nj, threshold) {
|
||||
res = true
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func abs(a int) int {
|
||||
if a < 0 {
|
||||
a = -a
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a < b {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// 解法二 并查集
|
||||
func minimumEffortPath1(heights [][]int) int {
|
||||
n, m, edges, uf := len(heights), len(heights[0]), []edge{}, template.UnionFind{}
|
||||
uf.Init(n * m)
|
||||
for i, row := range heights {
|
||||
for j, h := range row {
|
||||
id := i*m + j
|
||||
if i > 0 {
|
||||
edges = append(edges, edge{id - m, id, abs(h - heights[i-1][j])})
|
||||
}
|
||||
if j > 0 {
|
||||
edges = append(edges, edge{id - 1, id, abs(h - heights[i][j-1])})
|
||||
}
|
||||
}
|
||||
}
|
||||
sort.Slice(edges, func(i, j int) bool { return edges[i].diff < edges[j].diff })
|
||||
for _, e := range edges {
|
||||
uf.Union(e.v, e.w)
|
||||
if uf.Find(0) == uf.Find(n*m-1) {
|
||||
return e.diff
|
||||
}
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
type edge struct {
|
||||
v, w, diff int
|
||||
}
|
@ -0,0 +1,52 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
type question1631 struct {
|
||||
para1631
|
||||
ans1631
|
||||
}
|
||||
|
||||
// para 是参数
|
||||
// one 代表第一个参数
|
||||
type para1631 struct {
|
||||
heights [][]int
|
||||
}
|
||||
|
||||
// ans 是答案
|
||||
// one 代表第一个答案
|
||||
type ans1631 struct {
|
||||
one int
|
||||
}
|
||||
|
||||
func Test_Problem1631(t *testing.T) {
|
||||
|
||||
qs := []question1631{
|
||||
|
||||
{
|
||||
para1631{[][]int{{1, 2, 2}, {3, 8, 2}, {5, 3, 5}}},
|
||||
ans1631{2},
|
||||
},
|
||||
|
||||
{
|
||||
para1631{[][]int{{1, 2, 3}, {3, 8, 4}, {5, 3, 5}}},
|
||||
ans1631{1},
|
||||
},
|
||||
|
||||
{
|
||||
para1631{[][]int{{1, 2, 1, 1, 1}, {1, 2, 1, 2, 1}, {1, 2, 1, 2, 1}, {1, 2, 1, 2, 1}, {1, 1, 1, 2, 1}}},
|
||||
ans1631{0},
|
||||
},
|
||||
}
|
||||
|
||||
fmt.Printf("------------------------Leetcode Problem 1631------------------------\n")
|
||||
|
||||
for _, q := range qs {
|
||||
_, p := q.ans1631, q.para1631
|
||||
fmt.Printf("【input】:%v 【output】:%v \n", p, minimumEffortPath(p.heights))
|
||||
}
|
||||
fmt.Printf("\n\n\n")
|
||||
}
|
170
leetcode/1631.Path-With-Minimum-Effort/README.md
Normal file
170
leetcode/1631.Path-With-Minimum-Effort/README.md
Normal file
@ -0,0 +1,170 @@
|
||||
# [1631. Path With Minimum Effort](https://leetcode.com/problems/path-with-minimum-effort/)
|
||||
|
||||
## 题目
|
||||
|
||||
You are a hiker preparing for an upcoming hike. You are given `heights`, a 2D array of size `rows x columns`, where `heights[row][col]` represents the height of cell `(row, col)`. You are situated in the top-left cell, `(0, 0)`, and you hope to travel to the bottom-right cell, `(rows-1, columns-1)` (i.e., **0-indexed**). You can move **up**, **down**, **left**, or **right**, and you wish to find a route that requires the minimum **effort**.
|
||||
|
||||
A route's **effort** is the **maximum absolute difference** in heights between two consecutive cells of the route.
|
||||
|
||||
Return *the minimum **effort** required to travel from the top-left cell to the bottom-right cell.*
|
||||
|
||||
**Example 1:**
|
||||
|
||||

|
||||
|
||||
```
|
||||
Input: heights = [[1,2,2],[3,8,2],[5,3,5]]
|
||||
Output: 2
|
||||
Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells.
|
||||
This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.
|
||||
```
|
||||
|
||||
**Example 2:**
|
||||
|
||||

|
||||
|
||||
```
|
||||
Input: heights = [[1,2,3],[3,8,4],[5,3,5]]
|
||||
Output: 1
|
||||
Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].
|
||||
```
|
||||
|
||||
**Example 3:**
|
||||
|
||||

|
||||
|
||||
```
|
||||
Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]]
|
||||
Output: 0
|
||||
Explanation: This route does not require any effort.
|
||||
```
|
||||
|
||||
**Constraints:**
|
||||
|
||||
- `rows == heights.length`
|
||||
- `columns == heights[i].length`
|
||||
- `1 <= rows, columns <= 100`
|
||||
- `1 <= heights[i][j] <= 10^6`
|
||||
|
||||
## 题目大意
|
||||
|
||||
你准备参加一场远足活动。给你一个二维 `rows x columns` 的地图 `heights` ,其中 `heights[row][col]` 表示格子 `(row, col)` 的高度。一开始你在最左上角的格子 `(0, 0)` ,且你希望去最右下角的格子 `(rows-1, columns-1)` (注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。请你返回从左上角走到右下角的最小 体力消耗值 。
|
||||
|
||||
## 解题思路
|
||||
|
||||
- 此题和第 778 题解题思路完全一致。在第 778 题中求的是最短连通时间。此题求的是连通路径下的最小体力值。都是求的最小值,只是 2 个值的意义不同罢了。
|
||||
- 按照第 778 题的思路,本题也有多种解法。第一种解法是 DFS + 二分。先将题目变换一个等价问法。题目要求找到最小体力消耗值,也相当于问是否存在一个体力消耗值 x,只要大于等于 x,一定能连通。利用二分搜索来找到这个临界值。体力消耗值是有序的,此处满足二分搜索的条件。题目给定柱子高度是 [1,10^6],所以体力值一定在 [0,10^6-1] 这个区间内。判断是否取中值的条件是用 DFS 或者 BFS 搜索 (0,0) 点和 (N-1, N-1) 点之间是否连通。时间复杂度:O(mnlogC),其中 m 和 n 分别是地图的行数和列数,C 是格子的最大高度。C 最大为 10^6,所以 logC 常数也很小。空间复杂度 O(mn)。
|
||||
- 第二种解法是并查集。将图中所有边按照权值从小到大进行排序,并依次加入并查集中。直到加入一条权值为 x 的边以后,左上角到右下角连通了。最小体力消耗值也就找到了。注意加入边的时候,只加入 `i-1` 和 `i` ,`j-1` 和 `j` 这 2 类相邻的边。因为最小体力消耗意味着不走回头路。上下左右四个方向到达一个节点,只可能从上边和左边走过来。从下边和右边走过来肯定是浪费体力了。时间复杂度:O(mnlog(mn)),其中 m 和 n 分别是地图的行数和列数,图中的边数为 O(mn)。空间复杂度 O(mn),即为存储所有边以及并查集需要的空间。
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"sort"
|
||||
|
||||
"github.com/halfrost/LeetCode-Go/template"
|
||||
)
|
||||
|
||||
var dir = [4][2]int{
|
||||
{0, 1},
|
||||
{1, 0},
|
||||
{0, -1},
|
||||
{-1, 0},
|
||||
}
|
||||
|
||||
// 解法一 DFS + 二分
|
||||
func minimumEffortPath(heights [][]int) int {
|
||||
n, m := len(heights), len(heights[0])
|
||||
visited := make([][]bool, n)
|
||||
for i := range visited {
|
||||
visited[i] = make([]bool, m)
|
||||
}
|
||||
low, high := 0, 1000000
|
||||
for low < high {
|
||||
threshold := low + (high-low)>>1
|
||||
if !hasPath(heights, visited, 0, 0, threshold) {
|
||||
low = threshold + 1
|
||||
} else {
|
||||
high = threshold
|
||||
}
|
||||
for i := range visited {
|
||||
for j := range visited[i] {
|
||||
visited[i][j] = false
|
||||
}
|
||||
}
|
||||
}
|
||||
return low
|
||||
}
|
||||
|
||||
func hasPath(heights [][]int, visited [][]bool, i, j, threshold int) bool {
|
||||
n, m := len(heights), len(heights[0])
|
||||
if i == n-1 && j == m-1 {
|
||||
return true
|
||||
}
|
||||
visited[i][j] = true
|
||||
res := false
|
||||
for _, d := range dir {
|
||||
ni, nj := i+d[0], j+d[1]
|
||||
if ni < 0 || ni >= n || nj < 0 || nj >= m || visited[ni][nj] || res {
|
||||
continue
|
||||
}
|
||||
diff := abs(heights[i][j] - heights[ni][nj])
|
||||
if diff <= threshold && hasPath(heights, visited, ni, nj, threshold) {
|
||||
res = true
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func abs(a int) int {
|
||||
if a < 0 {
|
||||
a = -a
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a < b {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// 解法二 并查集
|
||||
func minimumEffortPath1(heights [][]int) int {
|
||||
n, m, edges, uf := len(heights), len(heights[0]), []edge{}, template.UnionFind{}
|
||||
uf.Init(n * m)
|
||||
for i, row := range heights {
|
||||
for j, h := range row {
|
||||
id := i*m + j
|
||||
if i > 0 {
|
||||
edges = append(edges, edge{id - m, id, abs(h - heights[i-1][j])})
|
||||
}
|
||||
if j > 0 {
|
||||
edges = append(edges, edge{id - 1, id, abs(h - heights[i][j-1])})
|
||||
}
|
||||
}
|
||||
}
|
||||
sort.Slice(edges, func(i, j int) bool { return edges[i].diff < edges[j].diff })
|
||||
for _, e := range edges {
|
||||
uf.Union(e.v, e.w)
|
||||
if uf.Find(0) == uf.Find(n*m-1) {
|
||||
return e.diff
|
||||
}
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
type edge struct {
|
||||
v, w, diff int
|
||||
}
|
||||
```
|
@ -0,0 +1,42 @@
|
||||
package leetcode
|
||||
|
||||
import "sort"
|
||||
|
||||
func maxHeight(cuboids [][]int) int {
|
||||
n := len(cuboids)
|
||||
for i := 0; i < n; i++ {
|
||||
sort.Ints(cuboids[i]) // 立方体三边内部排序
|
||||
}
|
||||
// 立方体排序,先按最短边,再到最长边
|
||||
sort.Slice(cuboids, func(i, j int) bool {
|
||||
if cuboids[i][0] != cuboids[j][0] {
|
||||
return cuboids[i][0] < cuboids[j][0]
|
||||
}
|
||||
if cuboids[i][1] != cuboids[j][1] {
|
||||
return cuboids[i][1] < cuboids[j][1]
|
||||
}
|
||||
return cuboids[i][2] < cuboids[j][2]
|
||||
})
|
||||
res := 0
|
||||
dp := make([]int, n)
|
||||
for i := 0; i < n; i++ {
|
||||
dp[i] = cuboids[i][2]
|
||||
res = max(res, dp[i])
|
||||
}
|
||||
for i := 1; i < n; i++ {
|
||||
for j := 0; j < i; j++ {
|
||||
if cuboids[j][0] <= cuboids[i][0] && cuboids[j][1] <= cuboids[i][1] && cuboids[j][2] <= cuboids[i][2] {
|
||||
dp[i] = max(dp[i], dp[j]+cuboids[i][2])
|
||||
}
|
||||
}
|
||||
res = max(res, dp[i])
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func max(x, y int) int {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
@ -0,0 +1,52 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
type question1691 struct {
|
||||
para1691
|
||||
ans1691
|
||||
}
|
||||
|
||||
// para 是参数
|
||||
// one 代表第一个参数
|
||||
type para1691 struct {
|
||||
cuboids [][]int
|
||||
}
|
||||
|
||||
// ans 是答案
|
||||
// one 代表第一个答案
|
||||
type ans1691 struct {
|
||||
one int
|
||||
}
|
||||
|
||||
func Test_Problem1691(t *testing.T) {
|
||||
|
||||
qs := []question1691{
|
||||
|
||||
{
|
||||
para1691{[][]int{{50, 45, 20}, {95, 37, 53}, {45, 23, 12}}},
|
||||
ans1691{190},
|
||||
},
|
||||
|
||||
{
|
||||
para1691{[][]int{{38, 25, 45}, {76, 35, 3}}},
|
||||
ans1691{76},
|
||||
},
|
||||
|
||||
{
|
||||
para1691{[][]int{{7, 11, 17}, {7, 17, 11}, {11, 7, 17}, {11, 17, 7}, {17, 7, 11}, {17, 11, 7}}},
|
||||
ans1691{102},
|
||||
},
|
||||
}
|
||||
|
||||
fmt.Printf("------------------------Leetcode Problem 1691------------------------\n")
|
||||
|
||||
for _, q := range qs {
|
||||
_, p := q.ans1691, q.para1691
|
||||
fmt.Printf("【input】:%v 【output】:%v\n", p, maxHeight(p.cuboids))
|
||||
}
|
||||
fmt.Printf("\n\n\n")
|
||||
}
|
106
leetcode/1691.Maximum-Height-by-Stacking-Cuboids/README.md
Normal file
106
leetcode/1691.Maximum-Height-by-Stacking-Cuboids/README.md
Normal file
@ -0,0 +1,106 @@
|
||||
# [1691. Maximum Height by Stacking Cuboids](https://leetcode.com/problems/maximum-height-by-stacking-cuboids/)
|
||||
|
||||
## 题目
|
||||
|
||||
Given `n` `cuboids` where the dimensions of the `ith` cuboid is `cuboids[i] = [widthi, lengthi, heighti]` (**0-indexed**). Choose a **subset** of `cuboids` and place them on each other.
|
||||
|
||||
You can place cuboid `i` on cuboid `j` if `widthi <= widthj` and `lengthi <= lengthj` and `heighti <= heightj`. You can rearrange any cuboid's dimensions by rotating it to put it on another cuboid.
|
||||
|
||||
Return *the **maximum height** of the stacked* `cuboids`.
|
||||
|
||||
**Example 1:**
|
||||
|
||||

|
||||
|
||||
```
|
||||
Input: cuboids = [[50,45,20],[95,37,53],[45,23,12]]
|
||||
Output: 190
|
||||
Explanation:
|
||||
Cuboid 1 is placed on the bottom with the 53x37 side facing down with height 95.
|
||||
Cuboid 0 is placed next with the 45x20 side facing down with height 50.
|
||||
Cuboid 2 is placed next with the 23x12 side facing down with height 45.
|
||||
The total height is 95 + 50 + 45 = 190.
|
||||
```
|
||||
|
||||
**Example 2:**
|
||||
|
||||
```
|
||||
Input: cuboids = [[38,25,45],[76,35,3]]
|
||||
Output: 76
|
||||
Explanation:
|
||||
You can't place any of the cuboids on the other.
|
||||
We choose cuboid 1 and rotate it so that the 35x3 side is facing down and its height is 76.
|
||||
```
|
||||
|
||||
**Example 3:**
|
||||
|
||||
```
|
||||
Input: cuboids = [[7,11,17],[7,17,11],[11,7,17],[11,17,7],[17,7,11],[17,11,7]]
|
||||
Output: 102
|
||||
Explanation:
|
||||
After rearranging the cuboids, you can see that all cuboids have the same dimension.
|
||||
You can place the 11x7 side down on all cuboids so their heights are 17.
|
||||
The maximum height of stacked cuboids is 6 * 17 = 102.
|
||||
```
|
||||
|
||||
**Constraints:**
|
||||
|
||||
- `n == cuboids.length`
|
||||
- `1 <= n <= 100`
|
||||
- `1 <= widthi, lengthi, heighti <= 100`
|
||||
|
||||
## 题目大意
|
||||
|
||||
给你 n 个长方体 cuboids ,其中第 i 个长方体的长宽高表示为 cuboids[i] = [widthi, lengthi, heighti](下标从 0 开始)。请你从 cuboids 选出一个 子集 ,并将它们堆叠起来。如果 widthi <= widthj 且 lengthi <= lengthj 且 heighti <= heightj ,你就可以将长方体 i 堆叠在长方体 j 上。你可以通过旋转把长方体的长宽高重新排列,以将它放在另一个长方体上。返回 堆叠长方体 cuboids 可以得到的 最大高度 。
|
||||
|
||||
## 解题思路
|
||||
|
||||
- 这一题是 LIS 最长递增子序列系列问题的延续。一维 LIS 问题是第 300 题。二维 LIS 问题是 354 题。这一题是三维的 LIS 问题。
|
||||
- 题目要求最终摞起来的长方体尽可能的高,那么把长宽高中最大的值旋转为高。这是针对单个方块的排序。多个方块间还要排序,因为他们摞起来有要求,大的方块必须放在下面。所以针对多个方块,按照长,宽,高的顺序进行排序。两次排序完成以后,可以用动态规划找出最大值了。定义 `dp[i]` 为以 `i` 为最后一块砖块所能堆叠的最高高度。由于长和宽已经排好序了。所以只需要在 [0, i - 1] 这个区间内动态更新 dp 最大值。
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
package leetcode
|
||||
|
||||
import "sort"
|
||||
|
||||
func maxHeight(cuboids [][]int) int {
|
||||
n := len(cuboids)
|
||||
for i := 0; i < n; i++ {
|
||||
sort.Ints(cuboids[i]) // 立方体三边内部排序
|
||||
}
|
||||
// 立方体排序,先按最短边,再到最长边
|
||||
sort.Slice(cuboids, func(i, j int) bool {
|
||||
if cuboids[i][0] != cuboids[j][0] {
|
||||
return cuboids[i][0] < cuboids[j][0]
|
||||
}
|
||||
if cuboids[i][1] != cuboids[j][1] {
|
||||
return cuboids[i][1] < cuboids[j][1]
|
||||
}
|
||||
return cuboids[i][2] < cuboids[j][2]
|
||||
})
|
||||
res := 0
|
||||
dp := make([]int, n)
|
||||
for i := 0; i < n; i++ {
|
||||
dp[i] = cuboids[i][2]
|
||||
res = max(res, dp[i])
|
||||
}
|
||||
for i := 1; i < n; i++ {
|
||||
for j := 0; j < i; j++ {
|
||||
if cuboids[j][0] <= cuboids[i][0] && cuboids[j][1] <= cuboids[i][1] && cuboids[j][2] <= cuboids[i][2] {
|
||||
dp[i] = max(dp[i], dp[j]+cuboids[i][2])
|
||||
}
|
||||
}
|
||||
res = max(res, dp[i])
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func max(x, y int) int {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
```
|
Reference in New Issue
Block a user