Add solution 0938、1642

This commit is contained in:
YDZ
2021-04-28 08:40:36 +08:00
parent d27ca9bd0a
commit 87c8048afb
30 changed files with 1064 additions and 476 deletions

View File

@ -0,0 +1,34 @@
package leetcode
import (
"github.com/halfrost/LeetCode-Go/structures"
)
// TreeNode define
type TreeNode = structures.TreeNode
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rangeSumBST(root *TreeNode, low int, high int) int {
res := 0
preOrder(root, low, high, &res)
return res
}
func preOrder(root *TreeNode, low, high int, res *int) {
if root == nil {
return
}
if low <= root.Val && root.Val <= high {
*res += root.Val
}
preOrder(root.Left, low, high, res)
preOrder(root.Right, low, high, res)
}

View File

@ -0,0 +1,53 @@
package leetcode
import (
"fmt"
"testing"
"github.com/halfrost/LeetCode-Go/structures"
)
type question938 struct {
para938
ans938
}
// para 是参数
// one 代表第一个参数
type para938 struct {
one []int
low int
high int
}
// ans 是答案
// one 代表第一个答案
type ans938 struct {
one int
}
func Test_Problem938(t *testing.T) {
qs := []question938{
{
para938{[]int{10, 5, 15, 3, 7, structures.NULL, 18}, 7, 15},
ans938{32},
},
{
para938{[]int{10, 5, 15, 3, 7, 13, 18, 1, structures.NULL, 6}, 6, 10},
ans938{23},
},
}
fmt.Printf("------------------------Leetcode Problem 938------------------------\n")
for _, q := range qs {
_, p := q.ans938, q.para938
fmt.Printf("【input】:%v ", p)
rootOne := structures.Ints2TreeNode(p.one)
fmt.Printf("【output】:%v \n", rangeSumBST(rootOne, p.low, p.high))
}
fmt.Printf("\n\n\n")
}

View File

@ -0,0 +1,80 @@
# [938. Range Sum of BST](https://leetcode.com/problems/range-sum-of-bst/)
## 题目
Given the `root` node of a binary search tree, return *the sum of values of all nodes with a value in the range `[low, high]`*.
**Example 1:**
![https://assets.leetcode.com/uploads/2020/11/05/bst1.jpg](https://assets.leetcode.com/uploads/2020/11/05/bst1.jpg)
```
Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
```
**Example 2:**
![https://assets.leetcode.com/uploads/2020/11/05/bst2.jpg](https://assets.leetcode.com/uploads/2020/11/05/bst2.jpg)
```
Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
```
**Constraints:**
- The number of nodes in the tree is in the range `[1, 2 * 10^4]`.
- `1 <= Node.val <= 10^5`
- `1 <= low <= high <= 10^5`
- All `Node.val` are **unique**.
## 题目大意
给定二叉搜索树的根结点 root返回值位于范围 [low, high] 之间的所有结点的值的和。
## 解题思路
- 简单题。因为二叉搜索树的有序性,先序遍历即为有序。遍历过程中判断节点值是否位于区间范围内,在区间内就累加,不在区间内节点就不管。最终输出累加和。
## 代码
```go
package leetcode
import (
"github.com/halfrost/LeetCode-Go/structures"
)
// TreeNode define
type TreeNode = structures.TreeNode
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rangeSumBST(root *TreeNode, low int, high int) int {
res := 0
preOrder(root, low, high, &res)
return res
}
func preOrder(root *TreeNode, low, high int, res *int) {
if root == nil {
return
}
if low <= root.Val && root.Val <= high {
*res += root.Val
}
preOrder(root.Left, low, high, res)
preOrder(root.Right, low, high, res)
}
```

View File

@ -0,0 +1,40 @@
package leetcode
import (
"container/heap"
)
func furthestBuilding(heights []int, bricks int, ladder int) int {
usedLadder := &heightDiffPQ{}
for i := 1; i < len(heights); i++ {
needbricks := heights[i] - heights[i-1]
if needbricks < 0 {
continue
}
if ladder > 0 {
heap.Push(usedLadder, needbricks)
ladder--
} else {
if len(*usedLadder) > 0 && needbricks > (*usedLadder)[0] {
needbricks, (*usedLadder)[0] = (*usedLadder)[0], needbricks
heap.Fix(usedLadder, 0)
}
if bricks -= needbricks; bricks < 0 {
return i - 1
}
}
}
return len(heights) - 1
}
type heightDiffPQ []int
func (pq heightDiffPQ) Len() int { return len(pq) }
func (pq heightDiffPQ) Less(i, j int) bool { return pq[i] < pq[j] }
func (pq heightDiffPQ) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] }
func (pq *heightDiffPQ) Push(x interface{}) { *pq = append(*pq, x.(int)) }
func (pq *heightDiffPQ) Pop() interface{} {
x := (*pq)[len(*pq)-1]
*pq = (*pq)[:len(*pq)-1]
return x
}

View File

@ -0,0 +1,59 @@
package leetcode
import (
"fmt"
"testing"
)
type question1642 struct {
para1642
ans1642
}
// para 是参数
// one 代表第一个参数
type para1642 struct {
heights []int
bricks int
ladders int
}
// ans 是答案
// one 代表第一个答案
type ans1642 struct {
one int
}
func Test_Problem1642(t *testing.T) {
qs := []question1642{
{
para1642{[]int{1, 5, 1, 2, 3, 4, 10000}, 4, 1},
ans1642{5},
},
{
para1642{[]int{4, 2, 7, 6, 9, 14, 12}, 5, 1},
ans1642{4},
},
{
para1642{[]int{4, 12, 2, 7, 3, 18, 20, 3, 19}, 10, 2},
ans1642{7},
},
{
para1642{[]int{14, 3, 19, 3}, 17, 0},
ans1642{3},
},
}
fmt.Printf("------------------------Leetcode Problem 1642------------------------\n")
for _, q := range qs {
_, p := q.ans1642, q.para1642
fmt.Printf("【input】:%v 【output】:%v \n", p, furthestBuilding(p.heights, p.bricks, p.ladders))
}
fmt.Printf("\n\n\n")
}

View File

@ -0,0 +1,113 @@
# [1642. Furthest Building You Can Reach](https://leetcode.com/problems/furthest-building-you-can-reach/)
## 题目
You are given an integer array `heights` representing the heights of buildings, some `bricks`, and some `ladders`.
You start your journey from building `0` and move to the next building by possibly using bricks or ladders.
While moving from building `i` to building `i+1` (**0-indexed**),
- If the current building's height is **greater than or equal** to the next building's height, you do **not** need a ladder or bricks.
- If the current building's height is **less than** the next building's height, you can either use **one ladder** or `(h[i+1] - h[i])` **bricks**.
*Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.*
**Example 1:**
![https://assets.leetcode.com/uploads/2020/10/27/q4.gif](https://assets.leetcode.com/uploads/2020/10/27/q4.gif)
```
Input: heights = [4,2,7,6,9,14,12], bricks = 5, ladders = 1
Output: 4
Explanation: Starting at building 0, you can follow these steps:
- Go to building 1 without using ladders nor bricks since 4 >= 2.
- Go to building 2 using 5 bricks. You must use either bricks or ladders because 2 < 7.
- Go to building 3 without using ladders nor bricks since 7 >= 6.
- Go to building 4 using your only ladder. You must use either bricks or ladders because 6 < 9.
It is impossible to go beyond building 4 because you do not have any more bricks or ladders.
```
**Example 2:**
```
Input: heights = [4,12,2,7,3,18,20,3,19], bricks = 10, ladders = 2
Output: 7
```
**Example 3:**
```
Input: heights = [14,3,19,3], bricks = 17, ladders = 0
Output: 3
```
**Constraints:**
- `1 <= heights.length <= 10^5`
- `1 <= heights[i] <= 10^6`
- `0 <= bricks <= 10^9`
- `0 <= ladders <= heights.length`
## 题目大意
给你一个整数数组 heights ,表示建筑物的高度。另有一些砖块 bricks 和梯子 ladders 。你从建筑物 0 开始旅程,不断向后面的建筑物移动,期间可能会用到砖块或梯子。当从建筑物 i 移动到建筑物 i+1下标 从 0 开始 )时:
- 如果当前建筑物的高度 大于或等于 下一建筑物的高度,则不需要梯子或砖块。
- 如果当前建筑的高度 小于 下一个建筑的高度,您可以使用 一架梯子 或 (h[i+1] - h[i]) 个砖块
如果以最佳方式使用给定的梯子和砖块,返回你可以到达的最远建筑物的下标(下标 从 0 开始 )。
## 解题思路
- 这一题可能会想到贪心算法。梯子很厉害,可以无限长,所以梯子用来跨越最高的楼。遇到非最高的距离差,先用砖头。这样贪心的话不正确。例如,[1, 5, 1, 2, 3, 4, 10000] 这组数据,梯子有 1 个4 块砖头。最大的差距在 10000 和 4 之间,贪心选择在此处用梯子。但是砖头不足以让我们走到最后两栋楼。贪心得到的结果是 3正确的结果是 5先用梯子再用砖头走过 345 号楼。
- 上面的贪心解法错误在于没有“动态”的贪心,使用梯子应该选择能爬过楼里面最高的 2 个。于是顺理成章的想到了优先队列。维护一个长度为梯子个数的最小堆,当队列中元素超过梯子个数,便将队首最小值出队,出队的这个楼与楼的差距用砖头填补。所有砖头用完了,即是可以到达的最远楼号。
## 代码
```go
package leetcode
import (
"container/heap"
)
func furthestBuilding(heights []int, bricks int, ladder int) int {
usedLadder := &heightDiffPQ{}
for i := 1; i < len(heights); i++ {
needbricks := heights[i] - heights[i-1]
if needbricks < 0 {
continue
}
if ladder > 0 {
heap.Push(usedLadder, needbricks)
ladder--
} else {
if len(*usedLadder) > 0 && needbricks > (*usedLadder)[0] {
needbricks, (*usedLadder)[0] = (*usedLadder)[0], needbricks
heap.Fix(usedLadder, 0)
}
if bricks -= needbricks; bricks < 0 {
return i - 1
}
}
}
return len(heights) - 1
}
type heightDiffPQ []int
func (pq heightDiffPQ) Len() int { return len(pq) }
func (pq heightDiffPQ) Less(i, j int) bool { return pq[i] < pq[j] }
func (pq heightDiffPQ) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] }
func (pq *heightDiffPQ) Push(x interface{}) { *pq = append(*pq, x.(int)) }
func (pq *heightDiffPQ) Pop() interface{} {
x := (*pq)[len(*pq)-1]
*pq = (*pq)[:len(*pq)-1]
return x
}
```