Add solution 0785

This commit is contained in:
YDZ
2020-10-06 13:26:32 +08:00
parent 5f4219ca84
commit 7ccb69a920
6 changed files with 284 additions and 44 deletions

View File

@ -0,0 +1,35 @@
package leetcode
// DFS 染色1 是红色0 是绿色,-1 是未染色
func isBipartite(graph [][]int) bool {
colors := make([]int, len(graph))
for i := range colors {
colors[i] = -1
}
for i := range graph {
if !dfs(i, graph, colors, -1) {
return false
}
}
return true
}
func dfs(n int, graph [][]int, colors []int, parentCol int) bool {
if colors[n] == -1 {
if parentCol == 1 {
colors[n] = 0
} else {
colors[n] = 1
}
} else if colors[n] == parentCol {
return false
} else if colors[n] != parentCol {
return true
}
for _, c := range graph[n] {
if !dfs(c, graph, colors, colors[n]) {
return false
}
}
return true
}

View File

@ -0,0 +1,52 @@
package leetcode
import (
"fmt"
"testing"
)
type question785 struct {
para785
ans785
}
// para 是参数
// one 代表第一个参数
type para785 struct {
graph [][]int
}
// ans 是答案
// one 代表第一个答案
type ans785 struct {
one bool
}
func Test_Problem785(t *testing.T) {
qs := []question785{
{
para785{[][]int{{1, 3}, {0, 2}, {1, 3}, {0, 2}}},
ans785{true},
},
{
para785{[][]int{{1, 2, 3}, {0, 2}, {0, 1, 3}, {0, 2}}},
ans785{false},
},
{
para785{[][]int{{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}}},
ans785{false},
},
}
fmt.Printf("------------------------Leetcode Problem 785------------------------\n")
for _, q := range qs {
_, p := q.ans785, q.para785
fmt.Printf("【input】:%v 【output】:%v\n", p, isBipartite(p.graph))
}
fmt.Printf("\n\n\n")
}

View File

@ -0,0 +1,98 @@
# [785. Is Graph Bipartite?](https://leetcode.com/problems/is-graph-bipartite/)
## 题目
Given an undirected `graph`, return `true` if and only if it is bipartite.
Recall that a graph is *bipartite* if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: `graph[i]` is a list of indexes `j` for which the edge between nodes `i` and `j` exists. Each node is an integer between `0` and `graph.length - 1`. There are no self edges or parallel edges: `graph[i]` does not contain `i`, and it doesn't contain any element twice.
Example 1:Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
**Note:**
- `graph` will have length in range `[1, 100]`.
- `graph[i]` will contain integers in range `[0, graph.length - 1]`.
- `graph[i]` will not contain `i` or duplicate values.
- The graph is undirected: if any element `j` is in `graph[i]`, then `i` will be in `graph[j]`.
## 题目大意
给定一个无向图 graph当这个图为二分图时返回 true。
graph 将会以邻接表方式给出graph[i] 表示图中与节点i相连的所有节点。每个节点都是一个在 0 到 graph.length-1 之间的整数。这图中没有自环和平行边 graph[i] 中不存在 i并且 graph[i] 中没有重复的值。
注意:
- graph 的长度范围为 [1, 100]。
- graph[i] 中的元素的范围为 [0, graph.length - 1]。
- graph[i] 不会包含 i 或者有重复的值。
- 图是无向的: 如果 j 在 graph[i] 里边, 那么 i 也会在 graph[j] 里边。
## 解题思路
- 判断一个无向图是否是二分图。二分图的定义:如果我们能将一个图的节点集合分割成两个独立的子集 A 和 B并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,我们就将这个图称为二分图。
- 这一题可以用 BFS、DFS、并查集来解答。这里是 DFS 实现。任选一个节点开始,把它染成红色,然后对整个图 DFS 遍历,把与它相连的节点并且未被染色的,都染成绿色。颜色不同的节点代表不同的集合。这时候还可能遇到第 2 种情况,与它相连的节点已经有颜色了,并且这个颜色和前一个节点的颜色相同,这就说明了该无向图不是二分图。可以直接 return false。如此遍历到所有节点都染色了如果能染色成功说明该无向图是二分图返回 true。
## 代码
```go
package leetcode
// DFS 染色1 是红色0 是绿色,-1 是未染色
func isBipartite(graph [][]int) bool {
colors := make([]int, len(graph))
for i := range colors {
colors[i] = -1
}
for i := range graph {
if !dfs(i, graph, colors, -1) {
return false
}
}
return true
}
func dfs(n int, graph [][]int, colors []int, parentCol int) bool {
if colors[n] == -1 {
if parentCol == 1 {
colors[n] = 0
} else {
colors[n] = 1
}
} else if colors[n] == parentCol {
return false
} else if colors[n] != parentCol {
return true
}
for _, c := range graph[n] {
if !dfs(c, graph, colors, colors[n]) {
return false
}
}
return true
}
```

View File

@ -1,44 +0,0 @@
func isBipartite(graph [][]int) bool {
colors := make([]int,len(graph))
for i := range colors {
colors[i] = -1
}
for i := range graph {
if !dfs(i, graph, colors, -1) {
fmt.Println(colors)
return false
}
}
fmt.Println(colors)
return true
}
func dfs(n int, graph [][]int, colors []int, parentCol int) bool {
if colors[n] == -1 {
if parentCol == 1 {
colors[n] = 0
} else {
colors[n] = 1
}
} else if colors[n] == parentCol {
fmt.Println(n)
return false
} else if colors[n] != parentCol {
return true
}
for _, c := range graph[n] {
if !dfs(c, graph, colors, colors[n]) {
fmt.Println(c)
return false
}
}
return true
}