规范格式

This commit is contained in:
YDZ
2020-08-07 15:50:06 +08:00
parent 854a339abc
commit 4e11f4028a
1438 changed files with 907 additions and 924 deletions

View File

@ -0,0 +1,33 @@
package leetcode
// 解法一 O(n^2)
func isSubsequence(s string, t string) bool {
index, flag := 0, false
for i := 0; i < len(s); i++ {
flag = false
for ; index < len(t); index++ {
if s[i] == t[index] {
flag = true
break
}
}
if flag == true {
index++
continue
} else {
return false
}
}
return true
}
// 解法二 O(n)
func isSubsequence1(s string, t string) bool {
for len(s) > 0 && len(t) > 0 {
if s[0] == t[0] {
s = s[1:]
}
t = t[1:]
}
return len(s) == 0
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,40 @@
# [392. Is Subsequence](https://leetcode.com/problems/is-subsequence/)
## 题目
Given a string **s** and a string **t**, check if **s** is subsequence of **t**.
You may assume that there is only lower case English letters in both **s** and **t**. **t** is potentially a very long (length ~= 500,000) string, and **s** is a short string (<=100).
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, `"ace"` is a subsequence of `"abcde"`while `"aec"` is not).
**Example 1:**
**s** = `"abc"`, **t** = `"ahbgdc"`
Return `true`.
**Example 2:**
**s** = `"axc"`, **t** = `"ahbgdc"`
Return `false`.
**Follow up:**If there are lots of incoming S, say S1, S2, ... , Sk where k >= 1B, and you want to check one by one to see if T has its subsequence. In this scenario, how would you change your code?
**Credits:**Special thanks to [@pbrother](https://leetcode.com/pbrother/) for adding this problem and creating all test cases.
## 题目大意
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。你可以认为 s 和 t 中仅包含英文小写字母。字符串 t 可能会很长(长度 ~= 500,000而 s 是个短字符串(长度 <=100。字符串的一个子序列是原始字符串删除一些也可以不删除字符而不改变剩余字符相对位置形成的新字符串。例如"ace"是"abcde"的一个子序列,而"aec"不是)。
## 解题思路
- 给定 2 个字符串 s 和 t问 s 是不是 t 的子序列。注意 s 在 t 中还需要保持 s 的字母的顺序。
- 这是一题贪心算法。直接做即可。