mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 16:36:41 +08:00
规范格式
This commit is contained in:
@ -0,0 +1,87 @@
|
||||
package leetcode
|
||||
|
||||
import "container/heap"
|
||||
|
||||
import (
|
||||
"github.com/halfrost/LeetCode-Go/structures"
|
||||
)
|
||||
|
||||
// TreeNode define
|
||||
type TreeNode = structures.TreeNode
|
||||
|
||||
/**
|
||||
* Definition for a binary tree node.
|
||||
* type TreeNode struct {
|
||||
* Val int
|
||||
* Left *TreeNode
|
||||
* Right *TreeNode
|
||||
* }
|
||||
*/
|
||||
|
||||
// BSTIterator define
|
||||
type BSTIterator struct {
|
||||
pq PriorityQueueOfInt
|
||||
count int
|
||||
}
|
||||
|
||||
// Constructor173 define
|
||||
func Constructor173(root *TreeNode) BSTIterator {
|
||||
result, pq := []int{}, PriorityQueueOfInt{}
|
||||
postorder(root, &result)
|
||||
for _, v := range result {
|
||||
heap.Push(&pq, v)
|
||||
}
|
||||
bs := BSTIterator{pq: pq, count: len(result)}
|
||||
return bs
|
||||
}
|
||||
|
||||
func postorder(root *TreeNode, output *[]int) {
|
||||
if root != nil {
|
||||
postorder(root.Left, output)
|
||||
postorder(root.Right, output)
|
||||
*output = append(*output, root.Val)
|
||||
}
|
||||
}
|
||||
|
||||
/** @return the next smallest number */
|
||||
func (this *BSTIterator) Next() int {
|
||||
this.count--
|
||||
return heap.Pop(&this.pq).(int)
|
||||
}
|
||||
|
||||
/** @return whether we have a next smallest number */
|
||||
func (this *BSTIterator) HasNext() bool {
|
||||
return this.count != 0
|
||||
}
|
||||
|
||||
/**
|
||||
* Your BSTIterator object will be instantiated and called as such:
|
||||
* obj := Constructor(root);
|
||||
* param_1 := obj.Next();
|
||||
* param_2 := obj.HasNext();
|
||||
*/
|
||||
type PriorityQueueOfInt []int
|
||||
|
||||
func (pq PriorityQueueOfInt) Len() int {
|
||||
return len(pq)
|
||||
}
|
||||
|
||||
func (pq PriorityQueueOfInt) Less(i, j int) bool {
|
||||
return pq[i] < pq[j]
|
||||
}
|
||||
|
||||
func (pq PriorityQueueOfInt) Swap(i, j int) {
|
||||
pq[i], pq[j] = pq[j], pq[i]
|
||||
}
|
||||
|
||||
func (pq *PriorityQueueOfInt) Push(x interface{}) {
|
||||
item := x.(int)
|
||||
*pq = append(*pq, item)
|
||||
}
|
||||
|
||||
func (pq *PriorityQueueOfInt) Pop() interface{} {
|
||||
n := len(*pq)
|
||||
item := (*pq)[n-1]
|
||||
*pq = (*pq)[:n-1]
|
||||
return item
|
||||
}
|
@ -0,0 +1,29 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
"github.com/halfrost/LeetCode-Go/structures"
|
||||
)
|
||||
|
||||
func Test_Problem173(t *testing.T) {
|
||||
|
||||
root := structures.Ints2TreeNode([]int{9, 7, 15, 3, structures.NULL, structures.NULL, 20})
|
||||
obj := Constructor173(root)
|
||||
fmt.Printf("obj = %v\n", obj)
|
||||
param1 := obj.Next()
|
||||
fmt.Printf("param_1 = %v\n", param1)
|
||||
param2 := obj.HasNext()
|
||||
fmt.Printf("param_2 = %v\n", param2)
|
||||
param1 = obj.Next()
|
||||
fmt.Printf("param_1 = %v\n", param1)
|
||||
param1 = obj.Next()
|
||||
fmt.Printf("param_1 = %v\n", param1)
|
||||
param1 = obj.Next()
|
||||
fmt.Printf("param_1 = %v\n", param1)
|
||||
param1 = obj.Next()
|
||||
fmt.Printf("param_1 = %v\n", param1)
|
||||
param2 = obj.HasNext()
|
||||
fmt.Printf("param_2 = %v\n", param2)
|
||||
}
|
38
leetcode/0173.Binary-Search-Tree-Iterator/README.md
Executable file
38
leetcode/0173.Binary-Search-Tree-Iterator/README.md
Executable file
@ -0,0 +1,38 @@
|
||||
# [173. Binary Search Tree Iterator](https://leetcode.com/problems/binary-search-tree-iterator/)
|
||||
|
||||
|
||||
## 题目
|
||||
|
||||
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST.
|
||||
|
||||
Calling `next()` will return the next smallest number in the BST.
|
||||
|
||||
**Example:**
|
||||
|
||||

|
||||
|
||||
BSTIterator iterator = new BSTIterator(root);
|
||||
iterator.next(); // return 3
|
||||
iterator.next(); // return 7
|
||||
iterator.hasNext(); // return true
|
||||
iterator.next(); // return 9
|
||||
iterator.hasNext(); // return true
|
||||
iterator.next(); // return 15
|
||||
iterator.hasNext(); // return true
|
||||
iterator.next(); // return 20
|
||||
iterator.hasNext(); // return false
|
||||
|
||||
**Note:**
|
||||
|
||||
- `next()` and `hasNext()` should run in average O(1) time and uses O(h) memory, where h is the height of the tree.
|
||||
- You may assume that `next()` call will always be valid, that is, there will be at least a next smallest number in the BST when `next()` is called.
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
实现一个二叉搜索树迭代器。你将使用二叉搜索树的根节点初始化迭代器。调用 next() 将返回二叉搜索树中的下一个最小的数。
|
||||
|
||||
## 解题思路
|
||||
|
||||
- 用优先队列解决即可
|
||||
|
Reference in New Issue
Block a user