mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 08:27:30 +08:00
规范格式
This commit is contained in:
63
leetcode/0089.Gray-Code/89. Gray Code.go
Normal file
63
leetcode/0089.Gray-Code/89. Gray Code.go
Normal file
@ -0,0 +1,63 @@
|
||||
package leetcode
|
||||
|
||||
// 解法一 递归方法,时间复杂度和空间复杂度都较优
|
||||
func grayCode(n int) []int {
|
||||
if n == 0 {
|
||||
return []int{0}
|
||||
}
|
||||
res := []int{}
|
||||
num := make([]int, n)
|
||||
generateGrayCode(int(1<<uint(n)), 0, &num, &res)
|
||||
return res
|
||||
}
|
||||
|
||||
func generateGrayCode(n, step int, num *[]int, res *[]int) {
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
*res = append(*res, convertBinary(*num))
|
||||
|
||||
if step%2 == 0 {
|
||||
(*num)[len(*num)-1] = flipGrayCode((*num)[len(*num)-1])
|
||||
} else {
|
||||
index := len(*num) - 1
|
||||
for ; index >= 0; index-- {
|
||||
if (*num)[index] == 1 {
|
||||
break
|
||||
}
|
||||
}
|
||||
if index == 0 {
|
||||
(*num)[len(*num)-1] = flipGrayCode((*num)[len(*num)-1])
|
||||
} else {
|
||||
(*num)[index-1] = flipGrayCode((*num)[index-1])
|
||||
}
|
||||
}
|
||||
generateGrayCode(n-1, step+1, num, res)
|
||||
return
|
||||
}
|
||||
|
||||
func convertBinary(num []int) int {
|
||||
res, rad := 0, 1
|
||||
for i := len(num) - 1; i >= 0; i-- {
|
||||
res += num[i] * rad
|
||||
rad *= 2
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func flipGrayCode(num int) int {
|
||||
if num == 0 {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// 解法二 直译
|
||||
func grayCode1(n int) []int {
|
||||
var l uint = 1 << uint(n)
|
||||
out := make([]int, l)
|
||||
for i := uint(0); i < l; i++ {
|
||||
out[i] = int((i >> 1) ^ i)
|
||||
}
|
||||
return out
|
||||
}
|
52
leetcode/0089.Gray-Code/89. Gray Code_test.go
Normal file
52
leetcode/0089.Gray-Code/89. Gray Code_test.go
Normal file
@ -0,0 +1,52 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
type question89 struct {
|
||||
para89
|
||||
ans89
|
||||
}
|
||||
|
||||
// para 是参数
|
||||
// one 代表第一个参数
|
||||
type para89 struct {
|
||||
one int
|
||||
}
|
||||
|
||||
// ans 是答案
|
||||
// one 代表第一个答案
|
||||
type ans89 struct {
|
||||
one []int
|
||||
}
|
||||
|
||||
func Test_Problem89(t *testing.T) {
|
||||
|
||||
qs := []question89{
|
||||
|
||||
question89{
|
||||
para89{2},
|
||||
ans89{[]int{0, 1, 3, 2}},
|
||||
},
|
||||
|
||||
question89{
|
||||
para89{0},
|
||||
ans89{[]int{0}},
|
||||
},
|
||||
|
||||
question89{
|
||||
para89{3},
|
||||
ans89{[]int{0, 1, 3, 2, 6, 7, 5, 4}},
|
||||
},
|
||||
}
|
||||
|
||||
fmt.Printf("------------------------Leetcode Problem 89------------------------\n")
|
||||
|
||||
for _, q := range qs {
|
||||
_, p := q.ans89, q.para89
|
||||
fmt.Printf("【input】:%v 【output】:%v\n", p, grayCode(p.one))
|
||||
}
|
||||
fmt.Printf("\n\n\n")
|
||||
}
|
46
leetcode/0089.Gray-Code/README.md
Executable file
46
leetcode/0089.Gray-Code/README.md
Executable file
@ -0,0 +1,46 @@
|
||||
# [89. Gray Code](https://leetcode.com/problems/gray-code/)
|
||||
|
||||
## 题目
|
||||
|
||||
The gray code is a binary numeral system where two successive values differ in only one bit.
|
||||
|
||||
Given a non-negative integer *n* representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
|
||||
|
||||
**Example 1:**
|
||||
|
||||
Input: 2
|
||||
Output: [0,1,3,2]
|
||||
Explanation:
|
||||
00 - 0
|
||||
01 - 1
|
||||
11 - 3
|
||||
10 - 2
|
||||
|
||||
For a given n, a gray code sequence may not be uniquely defined.
|
||||
For example, [0,2,3,1] is also a valid gray code sequence.
|
||||
|
||||
00 - 0
|
||||
10 - 2
|
||||
11 - 3
|
||||
01 - 1
|
||||
|
||||
**Example 2:**
|
||||
|
||||
Input: 0
|
||||
Output: [0]
|
||||
Explanation: We define the gray code sequence to begin with 0.
|
||||
A gray code sequence of n has size = 2n, which for n = 0 the size is 20 = 1.
|
||||
Therefore, for n = 0 the gray code sequence is [0].
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。
|
||||
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
- 输出 n 位格雷码
|
||||
- 格雷码生成规则:以二进制为0值的格雷码为第零项,第一次改变最右边的位元,第二次改变右起第一个为1的位元的左边位元,第三、四次方法同第一、二次,如此反复,即可排列出 n 个位元的格雷码。
|
||||
- 可以直接模拟,也可以用递归求解。
|
Reference in New Issue
Block a user