add: leetcode 396 readme

This commit is contained in:
Don2025
2022-07-06 15:14:28 +08:00
parent e85bad3027
commit 2e73dbad85

View File

@ -0,0 +1,110 @@
# [396. Rotate Function](https://leetcode.com/problems/rotate-function/)
## 题目
You are given an integer array `nums` of length `n`.
Assume `arrk` to be an array obtained by rotating `nums` by `k` positions clock-wise. We define the **rotation function** `F` on `nums` as follow:
- `F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]`.
Return the maximum value of `F(0), F(1), ..., F(n-1)`.
The test cases are generated so that the answer fits in a **32-bit** integer.
**Example 1:**
```c
Input: nums = [4,3,2,6]
Output: 26
Explanation:
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
```
**Example 2:**
```c
Input: nums = [100]
Output: 0
```
**Constraints:**
- `n == nums.length`
- `1 <= n <= 105`
- `-100 <= nums[i] <= 100`
## 题目大意
给定一个长度为`n`的整数数组`nums`,设`arrk`是数组`nums`顺时针旋转`k`个位置后的数组。
定义`nums`的旋转函数`F`为:
- `F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]`
返回`F(0), F(1), ..., F(n-1)`中的最大值。
## 解题思路
**抽象化观察:**
```c
nums = [A0, A1, A2, A3]
sum = A0 + A1 + A2+ A3
F(0) = 0*A0 +0*A0 + 1*A1 + 2*A2 + 3*A3
F(1) = 0*A3 + 1*A0 + 2*A1 + 3*A2
= F(0) + (A0 + A1 + A2) - 3*A3
= F(0) + (sum-A3) - 3*A3
= F(0) + sum - 4*A3
F(2) = 0*A2 + 1*A3 + 2*A0 + 3*A1
= F(1) + A3 + A0 + A1 - 3*A2
= F(1) + sum - 4*A2
F(3) = 0*A1 + 1*A2 + 2*A3 + 3*A0
= F(2) + A2 + A3 + A0 - 3*A1
= F(2) + sum - 4*A1
// 记sum为nums数组中所有元素和
// 可以猜测当0 ≤ i < n时存在公式:
F(i) = F(i-1) + sum - n * A(n-i)
```
**数学归纳法证明迭代公式:**
根据题目中给定的旋转函数公式可得已知条件:
- `F(0) = 0×nums[0] + 1×nums[1] + ... + (n1)×nums[n1]`
- `F(1) = 1×nums[0] + 2×nums[1] + ... + 0×nums[n-1]`
令数组`nums`中所有元素和为`sum`,用数学归纳法验证:当`1 ≤ k < n`时,`F(k) = F(k-1) + sum - n×nums[n-k]`成立。
**归纳奠基**:证明`k=1`时命题成立。
```c
F(1) = 1×nums[0] + 2×nums[1] + ... + 0×nums[n-1]
= F(0) + sum - n×nums[n-1]
```
**归纳假设**:假设`F(k) = F(k-1) + sum - n×nums[n-k]`成立。
**归纳递推**:由归纳假设推出`F(k+1) = F(k) + sum - n×nums[n-(k+1)]`成立,则假设的递推公式成立。
```c
F(k+1) = (k+1)×nums[0] + k×nums[1] + ... + 0×nums[n-1]
= F(k) + sum - n×nums[n-(k+1)]
```
因此可以得到递推公式:
-`n = 0`时,`F(0) = 0×nums[0] + 1×nums[1] + ... + (n1)×nums[n1]`
-`1 ≤ k < n`时,`F(k) = F(k-1) + sum - n×nums[n-k]`成立。
循环遍历`0 ≤ k < n`,计算出不同的`F(k)`并不断更新最大值,就能求出`F(0), F(1), ..., F(n-1)`中的最大值。