mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-05 16:36:41 +08:00
feature/874: add 874 solution
This commit is contained in:
124
leetcode/0874.Walking-Robot-Simulation/README.md
Normal file
124
leetcode/0874.Walking-Robot-Simulation/README.md
Normal file
@ -0,0 +1,124 @@
|
||||
# [875. Koko Eating Bananas](https://leetcode.com/problems/walking-robot-simulation/)
|
||||
|
||||
|
||||
## 题目
|
||||
|
||||
A robot on an infinite XY-plane starts at point `(0, 0)` and faces north. The robot can receive one of three possible types of `commands`:
|
||||
|
||||
- `-2`: turn left `90` degrees,
|
||||
- `-1`: turn right `90` degrees, or
|
||||
- `1 <= k <= 9`: move forward `k` units.
|
||||
|
||||
Some of the grid squares are `obstacles`. The `ith` obstacle is at grid point `obstacles[i] = (xi, yi)`.
|
||||
|
||||
If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)
|
||||
|
||||
Return *the maximum Euclidean distance that the robot will be from the origin **squared** (i.e. if the distance is* `5`*, return* `25`*)*.
|
||||
|
||||
**Note:**
|
||||
|
||||
- North means +Y direction.
|
||||
- East means +X direction.
|
||||
- South means -Y direction.
|
||||
- West means -X direction.
|
||||
|
||||
|
||||
|
||||
**Example 1:**
|
||||
|
||||
```
|
||||
Input: commands = [4,-1,3], obstacles = []
|
||||
Output: 25
|
||||
Explanation: The robot starts at (0, 0):
|
||||
1. Move north 4 units to (0, 4).
|
||||
2. Turn right.
|
||||
3. Move east 3 units to (3, 4).
|
||||
The furthest point away from the origin is (3, 4), which is 32 + 42 = 25 units away.
|
||||
```
|
||||
|
||||
**Example 2:**
|
||||
|
||||
```
|
||||
Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
|
||||
Output: 65
|
||||
Explanation: The robot starts at (0, 0):
|
||||
1. Move north 4 units to (0, 4).
|
||||
2. Turn right.
|
||||
3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4).
|
||||
4. Turn left.
|
||||
5. Move north 4 units to (1, 8).
|
||||
The furthest point away from the origin is (1, 8), which is 12 + 82 = 65 units away.
|
||||
```
|
||||
|
||||
|
||||
|
||||
**Constraints:**
|
||||
|
||||
- `1 <= commands.length <= 104`
|
||||
- `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`.
|
||||
- `0 <= obstacles.length <= 104`
|
||||
- `-3 * 104 <= xi, yi <= 3 * 104`
|
||||
- The answer is guaranteed to be less than `231`.
|
||||
|
||||
|
||||
## 题目大意
|
||||
|
||||
|
||||
机器人在一个无限大小的 XY 网格平面上行走,从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令 commands :
|
||||
|
||||
|
||||
-2 :向左转 90 度
|
||||
-1 :向右转 90 度
|
||||
1 <= x <= 9 :向前移动 x 个单位长度
|
||||
|
||||
|
||||
在网格上有一些格子被视为障碍物 obstacles 。第 i 个障碍物位于网格点 obstacles[i] = (xi, yi) 。
|
||||
|
||||
机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,但仍然可以继续尝试进行该路线的其余部分。
|
||||
|
||||
返回从原点到机器人所有经过的路径点(坐标为整数)的最大欧式距离的平方。(即,如果距离为 5 ,则返回 25 )
|
||||
|
||||
示例 1:
|
||||
输入:commands = [4,-1,3], obstacles = []
|
||||
输出:25
|
||||
解释:
|
||||
机器人开始位于 (0, 0):
|
||||
1. 向北移动 4 个单位,到达 (0, 4)
|
||||
2. 右转
|
||||
3. 向东移动 3 个单位,到达 (3, 4)
|
||||
距离原点最远的是 (3, 4) ,距离为 32 + 42 = 25
|
||||
|
||||
示例 2:
|
||||
输入:commands = [4,-1,4,-2,4], obstacles = [[2,4]]
|
||||
输出:65
|
||||
解释:机器人开始位于 (0, 0):
|
||||
1. 向北移动 4 个单位,到达 (0, 4)
|
||||
2. 右转
|
||||
3. 向东移动 1 个单位,然后被位于 (2, 4) 的障碍物阻挡,机器人停在 (1, 4)
|
||||
4. 左转
|
||||
5. 向北走 4 个单位,到达 (1, 8)
|
||||
距离原点最远的是 (1, 8) ,距离为 12 + 82 = 65
|
||||
|
||||
|
||||
提示:
|
||||
|
||||
- `1 <= commands.length <= 104`
|
||||
- `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`.
|
||||
- `0 <= obstacles.length <= 104`
|
||||
- `-3 * 104 <= xi, yi <= 3 * 104`
|
||||
- The answer is guaranteed to be less than `231`.
|
||||
|
||||
|
||||
## 解题思路
|
||||
|
||||
这个题的难点在于,怎么用编程语言去描述机器人的行为
|
||||
可以用以下数据结构表达机器人的行为:
|
||||
```go
|
||||
direct:= 0 // direct表示机器人移动方向:0 1 2 3 4 (北东南西),默认朝北
|
||||
x, y := 0, 0 // 表示当前机器人所在横纵坐标位置,默认为(0,0)
|
||||
directX := []int{0, 1, 0, -1}
|
||||
directY := []int{1, 0, -1, 0}
|
||||
// 组合directX directY和direct,表示机器人往某一个方向移动
|
||||
nextX := x + directX[direct]
|
||||
nextY := y + directY[direct]
|
||||
其他代码按照题意翻译即可
|
@ -0,0 +1,38 @@
|
||||
package leetcode
|
||||
|
||||
func robotSim(commands []int, obstacles [][]int) int {
|
||||
m := make(map[[2]int]struct{})
|
||||
for _, v := range obstacles {
|
||||
if len(v) != 0 {
|
||||
m[[2]int{v[0], v[1]}] = struct{}{}
|
||||
}
|
||||
}
|
||||
directX := []int{0, 1, 0, -1}
|
||||
directY := []int{1, 0, -1, 0}
|
||||
direct, x, y := 0, 0, 0
|
||||
result := 0
|
||||
for _, c := range commands {
|
||||
if c == -2 {
|
||||
direct = (direct + 3) % 4
|
||||
continue
|
||||
}
|
||||
if c == -1 {
|
||||
direct = (direct + 1) % 4
|
||||
continue
|
||||
}
|
||||
for ; c > 0; c-- {
|
||||
nextX := x + directX[direct]
|
||||
nextY := y + directY[direct]
|
||||
if _, ok := m[[2]int{nextX, nextY}]; ok {
|
||||
break
|
||||
}
|
||||
tmpResult := nextX*nextX + nextY*nextY
|
||||
if tmpResult > result {
|
||||
result = tmpResult
|
||||
}
|
||||
x = nextX
|
||||
y = nextY
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
@ -0,0 +1,39 @@
|
||||
package leetcode
|
||||
|
||||
import "testing"
|
||||
|
||||
func Test_robotSim(t *testing.T) {
|
||||
type args struct {
|
||||
commands []int
|
||||
obstacles [][]int
|
||||
}
|
||||
cases := []struct {
|
||||
name string
|
||||
args args
|
||||
want int
|
||||
}{
|
||||
{
|
||||
"case 1",
|
||||
args{
|
||||
commands: []int{4, -1, 3},
|
||||
obstacles: [][]int{{}},
|
||||
},
|
||||
25,
|
||||
},
|
||||
{
|
||||
"case 2",
|
||||
args{
|
||||
commands: []int{4, -1, 4, -2, 4},
|
||||
obstacles: [][]int{{2, 4}},
|
||||
},
|
||||
65,
|
||||
},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
if got := robotSim(tt.args.commands, tt.args.obstacles); got != tt.want {
|
||||
t.Errorf("robotSim() = %v, want %v", got, tt.want)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user