feature/874: add 874 solution

This commit is contained in:
novahe
2021-05-04 21:36:26 +08:00
parent 99fe55c7df
commit 1835b6dd45
3 changed files with 201 additions and 0 deletions

View File

@ -0,0 +1,124 @@
# [875. Koko Eating Bananas](https://leetcode.com/problems/walking-robot-simulation/)
## 题目
A robot on an infinite XY-plane starts at point `(0, 0)` and faces north. The robot can receive one of three possible types of `commands`:
- `-2`: turn left `90` degrees,
- `-1`: turn right `90` degrees, or
- `1 <= k <= 9`: move forward `k` units.
Some of the grid squares are `obstacles`. The `ith` obstacle is at grid point `obstacles[i] = (xi, yi)`.
If the robot would try to move onto them, the robot stays on the previous grid square instead (but still continues following the rest of the route.)
Return *the maximum Euclidean distance that the robot will be from the origin **squared** (i.e. if the distance is* `5`*, return* `25`*)*.
**Note:**
- North means +Y direction.
- East means +X direction.
- South means -Y direction.
- West means -X direction.
**Example 1:**
```
Input: commands = [4,-1,3], obstacles = []
Output: 25
Explanation: The robot starts at (0, 0):
1. Move north 4 units to (0, 4).
2. Turn right.
3. Move east 3 units to (3, 4).
The furthest point away from the origin is (3, 4), which is 32 + 42 = 25 units away.
```
**Example 2:**
```
Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
Output: 65
Explanation: The robot starts at (0, 0):
1. Move north 4 units to (0, 4).
2. Turn right.
3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4).
4. Turn left.
5. Move north 4 units to (1, 8).
The furthest point away from the origin is (1, 8), which is 12 + 82 = 65 units away.
```
**Constraints:**
- `1 <= commands.length <= 104`
- `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`.
- `0 <= obstacles.length <= 104`
- `-3 * 104 <= xi, yi <= 3 * 104`
- The answer is guaranteed to be less than `231`.
## 题目大意
机器人在一个无限大小的 XY 网格平面上行走,从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令 commands
-2 :向左转 90 度
-1 :向右转 90 度
1 <= x <= 9 :向前移动 x 个单位长度
在网格上有一些格子被视为障碍物 obstacles 。第 i 个障碍物位于网格点 obstacles[i] = (xi, yi) 。
机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,但仍然可以继续尝试进行该路线的其余部分。
返回从原点到机器人所有经过的路径点(坐标为整数)的最大欧式距离的平方。(即,如果距离为 5 ,则返回 25
示例 1
输入commands = [4,-1,3], obstacles = []
输出25
解释:
机器人开始位于 (0, 0)
1. 向北移动 4 个单位,到达 (0, 4)
2. 右转
3. 向东移动 3 个单位,到达 (3, 4)
距离原点最远的是 (3, 4) ,距离为 32 + 42 = 25
示例 2
输入commands = [4,-1,4,-2,4], obstacles = [[2,4]]
输出65
解释:机器人开始位于 (0, 0)
1. 向北移动 4 个单位,到达 (0, 4)
2. 右转
3. 向东移动 1 个单位,然后被位于 (2, 4) 的障碍物阻挡,机器人停在 (1, 4)
4. 左转
5. 向北走 4 个单位,到达 (1, 8)
距离原点最远的是 (1, 8) ,距离为 12 + 82 = 65
提示:
- `1 <= commands.length <= 104`
- `commands[i]` is one of the values in the list `[-2,-1,1,2,3,4,5,6,7,8,9]`.
- `0 <= obstacles.length <= 104`
- `-3 * 104 <= xi, yi <= 3 * 104`
- The answer is guaranteed to be less than `231`.
## 解题思路
这个题的难点在于,怎么用编程语言去描述机器人的行为
可以用以下数据结构表达机器人的行为:
```go
direct:= 0 // direct表示机器人移动方向0 1 2 3 4 (北东南西),默认朝北
x, y := 0, 0 // 表示当前机器人所在横纵坐标位置,默认为(0,0)
directX := []int{0, 1, 0, -1}
directY := []int{1, 0, -1, 0}
// 组合directX directY和direct表示机器人往某一个方向移动
nextX := x + directX[direct]
nextY := y + directY[direct]
其他代码按照题意翻译即可

View File

@ -0,0 +1,38 @@
package leetcode
func robotSim(commands []int, obstacles [][]int) int {
m := make(map[[2]int]struct{})
for _, v := range obstacles {
if len(v) != 0 {
m[[2]int{v[0], v[1]}] = struct{}{}
}
}
directX := []int{0, 1, 0, -1}
directY := []int{1, 0, -1, 0}
direct, x, y := 0, 0, 0
result := 0
for _, c := range commands {
if c == -2 {
direct = (direct + 3) % 4
continue
}
if c == -1 {
direct = (direct + 1) % 4
continue
}
for ; c > 0; c-- {
nextX := x + directX[direct]
nextY := y + directY[direct]
if _, ok := m[[2]int{nextX, nextY}]; ok {
break
}
tmpResult := nextX*nextX + nextY*nextY
if tmpResult > result {
result = tmpResult
}
x = nextX
y = nextY
}
}
return result
}

View File

@ -0,0 +1,39 @@
package leetcode
import "testing"
func Test_robotSim(t *testing.T) {
type args struct {
commands []int
obstacles [][]int
}
cases := []struct {
name string
args args
want int
}{
{
"case 1",
args{
commands: []int{4, -1, 3},
obstacles: [][]int{{}},
},
25,
},
{
"case 2",
args{
commands: []int{4, -1, 4, -2, 4},
obstacles: [][]int{{2, 4}},
},
65,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
if got := robotSim(tt.args.commands, tt.args.obstacles); got != tt.want {
t.Errorf("robotSim() = %v, want %v", got, tt.want)
}
})
}
}