Add solution 0119、1439

This commit is contained in:
YDZ
2021-02-12 12:26:21 +08:00
parent 048c42db23
commit 0881edff66
32 changed files with 887 additions and 241 deletions

View File

@ -0,0 +1,10 @@
package leetcode
func getRow(rowIndex int) []int {
row := make([]int, rowIndex+1)
row[0] = 1
for i := 1; i <= rowIndex; i++ {
row[i] = row[i-1] * (rowIndex - i + 1) / i
}
return row
}

View File

@ -0,0 +1,47 @@
package leetcode
import (
"fmt"
"testing"
)
type question119 struct {
para119
ans119
}
// para 是参数
// one 代表第一个参数
type para119 struct {
rowIndex int
}
// ans 是答案
// one 代表第一个答案
type ans119 struct {
one []int
}
func Test_Problem119(t *testing.T) {
qs := []question119{
{
para119{3},
ans119{[]int{1, 3, 3, 1}},
},
{
para119{0},
ans119{[]int{1}},
},
}
fmt.Printf("------------------------Leetcode Problem 119------------------------\n")
for _, q := range qs {
_, p := q.ans119, q.para119
fmt.Printf("【input】:%v 【output】:%v\n", p, getRow(p.rowIndex))
}
fmt.Printf("\n\n\n")
}

View File

@ -0,0 +1,72 @@
# [119. Pascal's Triangle II](https://leetcode.com/problems/pascals-triangle-ii/)
## 题目
Given an integer `rowIndex`, return the `rowIndexth` row of the Pascal's triangle.
Notice that the row index starts from **0**.
![https://upload.wikimedia.org/wikipedia/commons/0/0d/PascalTriangleAnimated2.gif](https://upload.wikimedia.org/wikipedia/commons/0/0d/PascalTriangleAnimated2.gif)
In Pascal's triangle, each number is the sum of the two numbers directly above it.
**Follow up:**
Could you optimize your algorithm to use only *O*(*k*) extra space?
**Example 1:**
```
Input: rowIndex = 3
Output: [1,3,3,1]
```
**Example 2:**
```
Input: rowIndex = 0
Output: [1]
```
**Example 3:**
```
Input: rowIndex = 1
Output: [1,1]
```
**Constraints:**
- `0 <= rowIndex <= 33`
## 题目大意
给定一个非负索引 k其中 k ≤ 33返回杨辉三角的第 k 行。
## 解题思路
- 题目中的三角是杨辉三角,每个数字是 `(a+b)^n` 二项式展开的系数。题目要求我们只能使用 O(k) 的空间。那么需要找到两两项直接的递推关系。由组合知识得知:
$$\begin{aligned}C_{n}^{m} &= \frac{n!}{m!(n-m)!} \\C_{n}^{m-1} &= \frac{n!}{(m-1)!(n-m+1)!}\end{aligned}$$
于是得到递推公式:
$$C_{n}^{m} = C_{n}^{m-1} \times \frac{n-m+1}{m}$$
利用这个递推公式即可以把空间复杂度优化到 O(k)
## 代码
```go
package leetcode
func getRow(rowIndex int) []int {
row := make([]int, rowIndex+1)
row[0] = 1
for i := 1; i <= rowIndex; i++ {
row[i] = row[i-1] * (rowIndex - i + 1) / i
}
return row
}
```

View File

@ -0,0 +1,82 @@
package leetcode
import "container/heap"
func kthSmallest(mat [][]int, k int) int {
if len(mat) == 0 || len(mat[0]) == 0 || k == 0 {
return 0
}
prev := mat[0]
for i := 1; i < len(mat); i++ {
prev = kSmallestPairs(prev, mat[i], k)
}
if k < len(prev) {
return -1
}
return prev[k-1]
}
func kSmallestPairs(nums1 []int, nums2 []int, k int) []int {
res := []int{}
if len(nums2) == 0 {
return res
}
pq := newPriorityQueue()
for i := 0; i < len(nums1) && i < k; i++ {
heap.Push(pq, &pddata{
n1: nums1[i],
n2: nums2[0],
n2Idx: 0,
})
}
for pq.Len() > 0 {
i := heap.Pop(pq)
data := i.(*pddata)
res = append(res, data.n1+data.n2)
k--
if k <= 0 {
break
}
idx := data.n2Idx
idx++
if idx >= len(nums2) {
continue
}
heap.Push(pq, &pddata{
n1: data.n1,
n2: nums2[idx],
n2Idx: idx,
})
}
return res
}
type pddata struct {
n1 int
n2 int
n2Idx int
}
type priorityQueue []*pddata
func newPriorityQueue() *priorityQueue {
pq := priorityQueue([]*pddata{})
heap.Init(&pq)
return &pq
}
func (pq priorityQueue) Len() int { return len(pq) }
func (pq priorityQueue) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] }
func (pq priorityQueue) Less(i, j int) bool { return pq[i].n1+pq[i].n2 < pq[j].n1+pq[j].n2 }
func (pq *priorityQueue) Pop() interface{} {
old := *pq
val := old[len(old)-1]
old[len(old)-1] = nil
*pq = old[0 : len(old)-1]
return val
}
func (pq *priorityQueue) Push(i interface{}) {
val := i.(*pddata)
*pq = append(*pq, val)
}

View File

@ -0,0 +1,56 @@
package leetcode
import (
"fmt"
"testing"
)
type question1439 struct {
para1439
ans1439
}
// para 是参数
// one 代表第一个参数
type para1439 struct {
mat [][]int
k int
}
// ans 是答案
// one 代表第一个答案
type ans1439 struct {
one int
}
func Test_Problem1439(t *testing.T) {
qs := []question1439{
{
para1439{[][]int{{1, 3, 11}, {2, 4, 6}}, 5},
ans1439{7},
},
{
para1439{[][]int{{1, 3, 11}, {2, 4, 6}}, 9},
ans1439{17},
},
{
para1439{[][]int{{1, 10, 10}, {1, 4, 5}, {2, 3, 6}}, 7},
ans1439{9},
},
{
para1439{[][]int{{1, 1, 10}, {2, 2, 9}}, 7},
ans1439{12},
},
}
fmt.Printf("------------------------Leetcode Problem 1439------------------------\n")
for _, q := range qs {
_, p := q.ans1439, q.para1439
fmt.Printf("【input】:%v 【output】:%v\n", p, kthSmallest(p.mat, p.k))
}
fmt.Printf("\n\n\n")
}

View File

@ -0,0 +1,144 @@
# [1439. Find the Kth Smallest Sum of a Matrix With Sorted Rows](https://leetcode.com/problems/find-the-kth-smallest-sum-of-a-matrix-with-sorted-rows/)
## 题目
You are given an `m * n` matrix, `mat`, and an integer `k`, which has its rows sorted in non-decreasing order.
You are allowed to choose exactly 1 element from each row to form an array. Return the Kth **smallest** array sum among all possible arrays.
**Example 1:**
```
Input: mat = [[1,3,11],[2,4,6]], k = 5
Output: 7
Explanation: Choosing one element from each row, the first k smallest sum are:
[1,2], [1,4], [3,2], [3,4], [1,6]. Where the 5th sum is 7.
```
**Example 2:**
```
Input: mat = [[1,3,11],[2,4,6]], k = 9
Output: 17
```
**Example 3:**
```
Input: mat = [[1,10,10],[1,4,5],[2,3,6]], k = 7
Output: 9
Explanation: Choosing one element from each row, the first k smallest sum are:
[1,1,2], [1,1,3], [1,4,2], [1,4,3], [1,1,6], [1,5,2], [1,5,3]. Where the 7th sum is 9.
```
**Example 4:**
```
Input: mat = [[1,1,10],[2,2,9]], k = 7
Output: 12
```
**Constraints:**
- `m == mat.length`
- `n == mat.length[i]`
- `1 <= m, n <= 40`
- `1 <= k <= min(200, n ^ m)`
- `1 <= mat[i][j] <= 5000`
- `mat[i]` is a non decreasing array.
## 题目大意
给你一个 m * n 的矩阵 mat以及一个整数 k ,矩阵中的每一行都以非递减的顺序排列。你可以从每一行中选出 1 个元素形成一个数组。返回所有可能数组中的第 k 个 最小数组和。
## 解题思路
- 这一题是第 373 题的升级版。在第 373 题中,给定 2 个有序数组,要求分别从这 2 个数组中选出一个数组成一个数对,最终输出和最小的 K 组。这一题中给出的是 m*n 的矩阵。其实是将第 373 题的 2 个数组升级为了 m 个数组。无非外层多了一层循环。这层循环依次从每一行中选出一个数,先从第 0 行和第 1 行取数,找到前 K 小的组合以后,再从第 2 行取数,以此类推。其他做法和第 373 题一致。维护一个长度为 k 的最小堆。每次从堆中 pop 出最小的数组和 sum 和对应的下标 index然后依次将下标向后移动一位生成新的 sum加入堆中。
## 代码
```go
package leetcode
import "container/heap"
func kthSmallest(mat [][]int, k int) int {
if len(mat) == 0 || len(mat[0]) == 0 || k == 0 {
return 0
}
prev := mat[0]
for i := 1; i < len(mat); i++ {
prev = kSmallestPairs(prev, mat[i], k)
}
if k < len(prev) {
return -1
}
return prev[k-1]
}
func kSmallestPairs(nums1 []int, nums2 []int, k int) []int {
res := []int{}
if len(nums2) == 0 {
return res
}
pq := newPriorityQueue()
for i := 0; i < len(nums1) && i < k; i++ {
heap.Push(pq, &pddata{
n1: nums1[i],
n2: nums2[0],
n2Idx: 0,
})
}
for pq.Len() > 0 {
i := heap.Pop(pq)
data := i.(*pddata)
res = append(res, data.n1+data.n2)
k--
if k <= 0 {
break
}
idx := data.n2Idx
idx++
if idx >= len(nums2) {
continue
}
heap.Push(pq, &pddata{
n1: data.n1,
n2: nums2[idx],
n2Idx: idx,
})
}
return res
}
type pddata struct {
n1 int
n2 int
n2Idx int
}
type priorityQueue []*pddata
func newPriorityQueue() *priorityQueue {
pq := priorityQueue([]*pddata{})
heap.Init(&pq)
return &pq
}
func (pq priorityQueue) Len() int { return len(pq) }
func (pq priorityQueue) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] }
func (pq priorityQueue) Less(i, j int) bool { return pq[i].n1+pq[i].n2 < pq[j].n1+pq[j].n2 }
func (pq *priorityQueue) Pop() interface{} {
old := *pq
val := old[len(old)-1]
old[len(old)-1] = nil
*pq = old[0 : len(old)-1]
return val
}
func (pq *priorityQueue) Push(i interface{}) {
val := i.(*pddata)
*pq = append(*pq, val)
}
```