mirror of
https://github.com/halfrost/LeetCode-Go.git
synced 2025-07-06 17:44:10 +08:00
Add solution 478
This commit is contained in:
@ -44,9 +44,7 @@ babgbagbabgbagbabgbagbabgbagbabgbag
|
||||
- 当 `i < len(s)` 且 `j < len(t)` 的时候,如果 `s[i] == t[j]`,有 2 种匹配方式,第一种将 `s[i]` 与 `t[j]` 匹配,那么 `t[j+1:]` 匹配 `s[i+1:]` 的子序列,子序列数为 `dp[i+1][j+1]`;第二种将 `s[i]` 不与 `t[j]` 匹配,`t[j:]` 作为 `s[i+1:]` 的子序列,子序列数为 `dp[i+1][j]`。综合 2 种情况,当 `s[i] == t[j]` 时,`dp[i][j] = dp[i+1][j+1] + dp[i+1][j]`。
|
||||
- 如果 `s[i] != t[j]`,此时 `t[j:]` 只能作为 `s[i+1:]` 的子序列,子序列数为 `dp[i+1][j]`。所以当 `s[i] != t[j]` 时,`dp[i][j] = dp[i+1][j]`。综上分析得:
|
||||
|
||||
{{< katex display >}}
|
||||
dp[i][j] = \left\{\begin{matrix}dp[i+1][j+1]+dp[i+1][j]&,s[i]=t[j]\\ dp[i+1][j]&,s[i]!=t[j]\end{matrix}\right.
|
||||
{{< /katex >}}
|
||||
$$dp[i][j] = \left\{\begin{matrix}dp[i+1][j+1]+dp[i+1][j]&,s[i]=t[j]\\ dp[i+1][j]&,s[i]!=t[j]\end{matrix}\right.$$
|
||||
|
||||
- 最后是优化版本。写出上述代码以后,可以发现填表的过程是从右下角一直填到左上角。填表顺序是 从下往上一行一行的填。行内从右往左填。于是可以将这个二维数据压缩到一维。因为填充当前行只需要用到它的下一行信息即可,更进一步,用到的是下一行中右边元素的信息。于是可以每次更新该行时,先将旧的值存起来,计算更新该行的时候从右往左更新。这样做即可减少一维空间,将原来的二维数组压缩到一维数组。
|
||||
|
||||
|
@ -0,0 +1,46 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
"time"
|
||||
)
|
||||
|
||||
type Solution struct {
|
||||
r float64
|
||||
x float64
|
||||
y float64
|
||||
}
|
||||
|
||||
func Constructor(radius float64, x_center float64, y_center float64) Solution {
|
||||
rand.Seed(time.Now().UnixNano())
|
||||
return Solution{radius, x_center, y_center}
|
||||
}
|
||||
|
||||
func (this *Solution) RandPoint() []float64 {
|
||||
/*
|
||||
a := angle()
|
||||
r := this.r * math.Sqrt(rand.Float64())
|
||||
x := r * math.Cos(a) + this.x
|
||||
y := r * math.Sin(a) + this.y
|
||||
return []float64{x, y}*/
|
||||
for {
|
||||
rx := 2*rand.Float64() - 1.0
|
||||
ry := 2*rand.Float64() - 1.0
|
||||
x := this.r * rx
|
||||
y := this.r * ry
|
||||
if x*x+y*y <= this.r*this.r {
|
||||
return []float64{x + this.x, y + this.y}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func angle() float64 {
|
||||
return rand.Float64() * 2 * math.Pi
|
||||
}
|
||||
|
||||
/**
|
||||
* Your Solution object will be instantiated and called as such:
|
||||
* obj := Constructor(radius, x_center, y_center);
|
||||
* param_1 := obj.RandPoint();
|
||||
*/
|
@ -0,0 +1,18 @@
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func Test_Problem478(t *testing.T) {
|
||||
obj := Constructor(1, 0, 0)
|
||||
fmt.Printf("RandPoint() = %v\n", obj.RandPoint())
|
||||
fmt.Printf("RandPoint() = %v\n", obj.RandPoint())
|
||||
fmt.Printf("RandPoint() = %v\n", obj.RandPoint())
|
||||
|
||||
obj = Constructor(10, 5, -7.5)
|
||||
fmt.Printf("RandPoint() = %v\n", obj.RandPoint())
|
||||
fmt.Printf("RandPoint() = %v\n", obj.RandPoint())
|
||||
fmt.Printf("RandPoint() = %v\n", obj.RandPoint())
|
||||
}
|
103
leetcode/0478.Generate-Random-Point-in-a-Circle/README.md
Normal file
103
leetcode/0478.Generate-Random-Point-in-a-Circle/README.md
Normal file
@ -0,0 +1,103 @@
|
||||
# [478. Generate Random Point in a Circle](https://leetcode.com/problems/generate-random-point-in-a-circle/)
|
||||
|
||||
|
||||
## 题目
|
||||
|
||||
Given the radius and x-y positions of the center of a circle, write a function `randPoint` which generates a uniform random point in the circle.
|
||||
|
||||
Note:
|
||||
|
||||
1. input and output values are in [floating-point](https://www.webopedia.com/TERM/F/floating_point_number.html).
|
||||
2. radius and x-y position of the center of the circle is passed into the class constructor.
|
||||
3. a point on the circumference of the circle is considered to be in the circle.
|
||||
4. `randPoint` returns a size 2 array containing x-position and y-position of the random point, in that order.
|
||||
|
||||
**Example 1:**
|
||||
|
||||
```
|
||||
Input:
|
||||
["Solution","randPoint","randPoint","randPoint"]
|
||||
[[1,0,0],[],[],[]]
|
||||
Output: [null,[-0.72939,-0.65505],[-0.78502,-0.28626],[-0.83119,-0.19803]]
|
||||
|
||||
```
|
||||
|
||||
**Example 2:**
|
||||
|
||||
```
|
||||
Input:
|
||||
["Solution","randPoint","randPoint","randPoint"]
|
||||
[[10,5,-7.5],[],[],[]]
|
||||
Output: [null,[11.52438,-8.33273],[2.46992,-16.21705],[11.13430,-12.42337]]
|
||||
```
|
||||
|
||||
**Explanation of Input Syntax:**
|
||||
|
||||
The input is two lists: the subroutines called and their arguments. `Solution`'s constructor has three arguments, the radius, x-position of the center, and y-position of the center of the circle. `randPoint` has no arguments. Arguments are always wrapped with a list, even if there aren't any.
|
||||
|
||||
## 题目大意
|
||||
|
||||
给定圆的半径和圆心的 x、y 坐标,写一个在圆中产生均匀随机点的函数 randPoint 。
|
||||
|
||||
说明:
|
||||
|
||||
- 输入值和输出值都将是浮点数。
|
||||
- 圆的半径和圆心的 x、y 坐标将作为参数传递给类的构造函数。
|
||||
- 圆周上的点也认为是在圆中。
|
||||
- randPoint 返回一个包含随机点的x坐标和y坐标的大小为2的数组。
|
||||
|
||||
## 解题思路
|
||||
|
||||
- 随机产生一个圆内的点,这个点一定满足定义 `(x-a)^2+(y-b)^2 ≤ R^2`,其中 `(a,b)` 是圆的圆心坐标,`R` 是半径。
|
||||
- 先假设圆心坐标在 (0,0),这样方便计算,最终输出坐标的时候整体加上圆心的偏移量即可。`rand.Float64()` 产生一个 `[0.0,1.0)` 区间的浮点数。`-R ≤ 2 * R * rand() - R < R`,利用随机产生坐标点的横纵坐标 `(x,y)` 与半径 R 的关系,如果 `x^2 + y^2 ≤ R^2`,那么说明产生的点在圆内。最终输出的时候要记得加上圆心坐标的偏移值。
|
||||
|
||||
## 代码
|
||||
|
||||
```go
|
||||
package leetcode
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
"time"
|
||||
)
|
||||
|
||||
type Solution struct {
|
||||
r float64
|
||||
x float64
|
||||
y float64
|
||||
}
|
||||
|
||||
func Constructor(radius float64, x_center float64, y_center float64) Solution {
|
||||
rand.Seed(time.Now().UnixNano())
|
||||
return Solution{radius, x_center, y_center}
|
||||
}
|
||||
|
||||
func (this *Solution) RandPoint() []float64 {
|
||||
/*
|
||||
a := angle()
|
||||
r := this.r * math.Sqrt(rand.Float64())
|
||||
x := r * math.Cos(a) + this.x
|
||||
y := r * math.Sin(a) + this.y
|
||||
return []float64{x, y}*/
|
||||
for {
|
||||
rx := 2*rand.Float64() - 1.0
|
||||
ry := 2*rand.Float64() - 1.0
|
||||
x := this.r * rx
|
||||
y := this.r * ry
|
||||
if x*x+y*y <= this.r*this.r {
|
||||
return []float64{x + this.x, y + this.y}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func angle() float64 {
|
||||
return rand.Float64() * 2 * math.Pi
|
||||
}
|
||||
|
||||
/**
|
||||
* Your Solution object will be instantiated and called as such:
|
||||
* obj := Constructor(radius, x_center, y_center);
|
||||
* param_1 := obj.RandPoint();
|
||||
*/
|
||||
```
|
Reference in New Issue
Block a user