Files
JavaScript/Maths/ExtendedEuclideanGCD.js

61 lines
1.4 KiB
JavaScript

/**
* Problem statement and explanation: https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
*
* This algorithm plays an important role for modular arithmetic, and by extension for cyptography algorithms
*
* This implementation uses an iterative approach to calculate
*/
/**
*
* @param {Number} arg1 first argument
* @param {Number} arg2 second argument
* @returns Array with GCD and first and second Bézout coefficients
*/
const extendedEuclideanGCD = (arg1, arg2) => {
if(typeof arg1 != 'number' || typeof arg2 != 'number') throw new TypeError('Not a Number');
if(arg1 < 1 || arg2 < 1) throw new TypeError('Must be positive numbers');
// Make the order of coefficients correct, as the algorithm assumes r0 > r1
if (arg1 < arg2) {
const res = extendedEuclideanGCD(arg2,arg1)
const temp = res[1]
res[1] = res[2]
res[2] = temp
return res;
}
// At this point arg1 > arg2
// Remainder values
let r0 = arg1
let r1 = arg2
// Coefficient1 values
let s0 = 1
let s1 = 0
// Coefficient 2 values
let t0 = 0
let t1 = 1
while(r1 != 0) {
const q = Math.floor(r0 / r1);
const r2 = r0 - r1*q;
const s2 = s0 - s1*q;
const t2 = t0 - t1*q;
r0 = r1
r1 = r2
s0 = s1
s1 = s2
t0 = t1
t1 = t2
}
return [r0,s0,t0];
}
export { extendedEuclideanGCD };
// ex