mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-14 18:03:53 +08:00
92 lines
3.3 KiB
JavaScript
92 lines
3.3 KiB
JavaScript
// Wikipedia URL for General Matrix Multiplication Concepts: https://en.wikipedia.org/wiki/Matrix_multiplication
|
|
|
|
// This algorithm has multiple functions that ultimately check if the inputs are actually matrices and if two Matrices (that can be different sizes) can be multiplied together.
|
|
// matrices that are of the same size [2x2]x[2x2], and the second is the multiplication of two matrices that are not the same size [2x3]x[3x2].
|
|
|
|
// MatrixCheck tests to see if all of the rows of the matrix inputted have similar size columns
|
|
const matrixCheck = (matrix) => {
|
|
let columnNumb
|
|
for (let index = 0; index < matrix.length; index++) {
|
|
if (index === 0) {
|
|
columnNumb = matrix[index].length
|
|
} else if (matrix[index].length !== columnNumb) {
|
|
console.log('The columns in this array are not equal')
|
|
} else {
|
|
return columnNumb
|
|
}
|
|
}
|
|
}
|
|
|
|
// tests to see if the matrices have a like side, i.e. the row length on the first matrix matches the column length on the second matrix, or vise versa.
|
|
const twoMatricesCheck = (first, second) => {
|
|
const [firstRowLength, secondRowLength, firstColLength, secondColLength] = [first.length, second.length, matrixCheck(first), matrixCheck(second)]
|
|
if (firstRowLength !== secondColLength || secondRowLength !== firstColLength) {
|
|
console.log('These matrices do not have a common side')
|
|
return false
|
|
} else {
|
|
return true
|
|
}
|
|
}
|
|
|
|
// returns an empty array that has the same number of rows as the left matrix being multiplied.
|
|
// Uses Array.prototype.map() to loop over the first (or left) matrix and returns an empty array on each iteration.
|
|
const initiateEmptyArray = (first, second) => {
|
|
if (twoMatricesCheck(first, second)) {
|
|
const emptyArray = first.map(() => {
|
|
return ['']
|
|
})
|
|
return emptyArray
|
|
} else {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Finally, `matrixMult` uses `Array.prototype.push()`, multiple layers of nested `for` loops, the addition assignment `+=` operator and multiplication operator `*` to perform the dot product between two matrices of differing sizes.
|
|
// Dot product, takes the row of the first matrix and multiplies it by the column of the second matrix, the `twoMatricesCheck` tested to see if they were the same size already.
|
|
// The dot product for each iteration is then saved to its respective index into `multMatrix`.
|
|
const matrixMult = (firstArray, secondArray) => {
|
|
const multMatrix = initiateEmptyArray(firstArray, secondArray)
|
|
for (let rm = 0; rm < firstArray.length; rm++) {
|
|
const rowMult = []
|
|
for (let col = 0; col < firstArray[0].length; col++) {
|
|
rowMult.push(firstArray[rm][col])
|
|
}
|
|
for (let cm = 0; cm < firstArray.length; cm++) {
|
|
const colMult = []
|
|
for (let row = 0; row < secondArray.length; row++) {
|
|
colMult.push(secondArray[row][cm])
|
|
}
|
|
let newNumb = 0
|
|
for (let index = 0; index < rowMult.length; index++) {
|
|
newNumb += rowMult[index] * colMult[index]
|
|
}
|
|
multMatrix[rm][cm] = newNumb
|
|
}
|
|
}
|
|
return multMatrix
|
|
}
|
|
|
|
const firstMatrix = [
|
|
[1, 2],
|
|
[3, 4]
|
|
]
|
|
|
|
const secondMatrix = [
|
|
[5, 6],
|
|
[7, 8]
|
|
]
|
|
|
|
console.log(matrixMult(firstMatrix, secondMatrix)) // [ [ 19, 22 ], [ 43, 50 ] ]
|
|
|
|
const thirdMatrix = [
|
|
[-1, 4, 1],
|
|
[7, -6, 2]
|
|
]
|
|
const fourthMatrix = [
|
|
[2, -2],
|
|
[5, 3],
|
|
[3, 2]
|
|
]
|
|
|
|
console.log(matrixMult(thirdMatrix, fourthMatrix)) // [ [ 21, 16 ], [ -10, -28 ] ]
|