Files
JavaScript/Maths/Fibonacci.js
Ephraim Atta-Duncan e112434dee Add tests to Math (#423)
* Add prettier config

* test: add test to check for absolute function

* chore: es5 to es6

* test: add test to check mean function

* test: add test for sum of digit

* test: add test for factorial

* test: add test for fibonnaci

* test: add test for find HCF

* test: add test for lcm

* test: add gridget test

* test: add test for mean square error

* test: add test for modular binary exponentiation

* test: add tests for palindrome

* test: add test for pascals triangle

* test: add tests for polynomial

* test: add tests for prime check

* test: add tests for reverse polish notation

* test: add tests for sieve of eratosthenes

* test: add tests for pi estimation monte carlo method

* chore: move tests to test folder

* chore: fix standardjs errors
2020-10-12 01:17:49 +05:30

76 lines
1.8 KiB
JavaScript

const list = []
const FibonacciIterative = (nth) => {
const sequence = []
if (nth >= 1) sequence.push(1)
if (nth >= 2) sequence.push(1)
for (let i = 2; i < nth; i++) {
sequence.push(sequence[i - 1] + sequence[i - 2])
}
return sequence
}
const FibonacciRecursive = (number) => {
return (() => {
switch (list.length) {
case 0:
list.push(1)
return FibonacciRecursive(number)
case 1:
list.push(1)
return FibonacciRecursive(number)
case number:
return list
default:
list.push(list[list.length - 1] + list[list.length - 2])
return FibonacciRecursive(number)
}
})()
}
const dict = new Map()
const FibonacciRecursiveDP = (stairs) => {
if (stairs <= 0) return 0
if (stairs === 1) return 1
// Memoize stair count
if (dict.has(stairs)) return dict.get(stairs)
const res =
FibonacciRecursiveDP(stairs - 1) + FibonacciRecursiveDP(stairs - 2)
dict.set(stairs, res)
return res
}
// Algorithms
// Calculates Fibonacci(n) such that Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)
// Fibonacci(0) = Fibonacci(1) = 1
// Uses a bottom up dynamic programming approach
// Solve each sub-problem once, using results of previous sub-problems
// which are n-1 and n-2 for Fibonacci numbers
// Although this algorithm is linear in space and time as a function
// of the input value n, it is exponential in the size of n as
// a function of the number of input bits
// @Satzyakiz
const FibonacciDpWithoutRecursion = (number) => {
const table = []
table.push(1)
table.push(1)
for (var i = 2; i < number; ++i) {
table.push(table[i - 1] + table[i - 2])
}
return table
}
export { FibonacciDpWithoutRecursion }
export { FibonacciIterative }
export { FibonacciRecursive }
export { FibonacciRecursiveDP }