mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-15 02:33:35 +08:00
67 lines
1.5 KiB
JavaScript
67 lines
1.5 KiB
JavaScript
/**
|
|
* QuickSelect is an algorithm to find the kth smallest number
|
|
*
|
|
* Notes:
|
|
* -QuickSelect is related to QuickSort, thus has optimal best and average
|
|
* case (O(n)) but unlikely poor worst case (O(n^2))
|
|
* -This implementation uses randomly selected pivots for better performance
|
|
*
|
|
* @complexity: O(n) (on average )
|
|
* @complexity: O(n^2) (worst case)
|
|
* @flow
|
|
*/
|
|
|
|
function QuickSelect (items, kth) {
|
|
return RandomizedSelect(items, 0, items.length - 1, kth)
|
|
}
|
|
|
|
function RandomizedSelect (
|
|
items,
|
|
left,
|
|
right,
|
|
i
|
|
) {
|
|
if (left === right) return items[left]
|
|
|
|
const pivotIndex = RandomizedPartition(items, left, right)
|
|
const k = pivotIndex - left + 1
|
|
|
|
if (i === k) return items[pivotIndex]
|
|
if (i < k) return RandomizedSelect(items, left, pivotIndex - 1, i)
|
|
|
|
return RandomizedSelect(items, pivotIndex + 1, right, i - k)
|
|
}
|
|
|
|
function RandomizedPartition (items, left, right) {
|
|
const rand = getRandomInt(left, right)
|
|
Swap(items, rand, right)
|
|
return Partition(items, left, right)
|
|
}
|
|
|
|
function Partition (items, left, right) {
|
|
const x = items[right]
|
|
let pivotIndex = left - 1
|
|
|
|
for (let j = left; j < right; j++) {
|
|
if (items[j] <= x) {
|
|
pivotIndex++
|
|
Swap(items, pivotIndex, j)
|
|
}
|
|
}
|
|
|
|
Swap(items, pivotIndex + 1, right)
|
|
|
|
return pivotIndex + 1
|
|
}
|
|
|
|
function getRandomInt (min, max) {
|
|
return Math.floor(Math.random() * (max - min + 1)) + min
|
|
}
|
|
|
|
function Swap (arr, x, y) {
|
|
[arr[x], arr[y]] = [arr[y], arr[x]]
|
|
}
|
|
|
|
// testing
|
|
console.log(QuickSelect([1, 4, 2, -2, 4, 5]))
|