Files
JavaScript/Data-Structures/Tree/BinarySearchTree.js
Pankaj Das 8c7d592191 chore: merge "removeValue method implemented to remove a particular node from the BST #687" (#696)
* removeValue method of BST implemented #687

* code has formatted for the file BinarySearchTree.js
2021-09-27 11:02:10 +05:30

167 lines
3.7 KiB
JavaScript

/* Binary Search Tree!!
*
* Nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
* to the right, and the parent from which they came from.
*
* A binary tree is a data structure in which an element
* has two successors(children). The left child is usually
* smaller than the parent, and the right child is usually
* bigger.
*/
// class Node
const Node = (function Node () {
// Node in the tree
function Node (val) {
this.value = val
this.left = null
this.right = null
}
// Search the tree for a value
Node.prototype.search = function (val) {
if (this.value === val) {
return this
} else if (val < this.value && this.left !== null) {
return this.left.search(val)
} else if (val > this.value && this.right !== null) {
return this.right.search(val)
}
return null
}
// Visit a node
Node.prototype.visit = function () {
// Recursively go left
if (this.left !== null) {
this.left.visit()
}
// Print out value
console.log(this.value)
// Recursively go right
if (this.right !== null) {
this.right.visit()
}
}
// Add a node
Node.prototype.addNode = function (n) {
if (n.value < this.value) {
if (this.left === null) {
this.left = n
} else {
this.left.addNode(n)
}
} else if (n.value > this.value) {
if (this.right === null) {
this.right = n
} else {
this.right.addNode(n)
}
}
}
// remove a node
Node.prototype.removeNode = function (val) {
if (val === this.value) {
if (!this.left && !this.right) {
return null
} else {
if (this.left) {
const leftMax = maxVal(this.left)
this.value = leftMax
this.left = this.left.removeNode(leftMax)
} else {
const rightMin = minVal(this.right)
this.value = rightMin
this.right = this.right.removeNode(rightMin)
}
}
} else if (val < this.value) {
this.left = this.left && this.left.removeNode(val)
} else if (val > this.value) {
this.right = this.right && this.right.removeNode(val)
}
return this
}
// find maximum value in the tree
const maxVal = function (node) {
if (!node.right) {
return node.value
}
return maxVal(node.right)
}
// find minimum value in the tree
const minVal = function (node) {
if (!node.left) {
return node.value
}
return minVal(node.left)
}
// returns the constructor
return Node
}())
// class Tree
const Tree = (function () {
function Tree () {
// Just store the root
this.root = null
};
// Inorder traversal
Tree.prototype.traverse = function () {
if (!this.root) {
console.log('No nodes are there in the tree till now')
return
}
this.root.visit()
}
// Start by searching the root
Tree.prototype.search = function (val) {
const found = this.root.search(val)
if (found === null) {
console.log(val + ' not found')
} else {
console.log('Found:' + found.value)
}
}
// Add a new value to the tree
Tree.prototype.addValue = function (val) {
const n = new Node(val)
if (this.root === null) {
this.root = n
} else {
this.root.addNode(n)
}
}
// remove a value from the tree
Tree.prototype.removeValue = function (val) {
// remove something if root exists
this.root = this.root && this.root.removeNode(val)
}
// returns the constructor
return Tree
}())
// Implementation of BST
const bst = new Tree()
bst.addValue(6)
bst.addValue(3)
bst.addValue(9)
bst.addValue(2)
bst.addValue(8)
bst.addValue(4)
bst.traverse()
bst.search(8)
bst.removeValue(3)
bst.removeValue(8)
bst.traverse()