mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-04 15:39:42 +08:00

* chore: Switch to Node 20 + Vitest * chore: migrate to vitest mock functions * chore: code style (switch to prettier) * test: re-enable long-running test Seems the switch to Node 20 and Vitest has vastly improved the code's and / or the test's runtime! see #1193 * chore: code style * chore: fix failing tests * Updated Documentation in README.md * Update contribution guidelines to state usage of Prettier * fix: set prettier printWidth back to 80 * chore: apply updated code style automatically * fix: set prettier line endings to lf again * chore: apply updated code style automatically --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Lars Müller <34514239+appgurueu@users.noreply.github.com>
55 lines
1.4 KiB
JavaScript
55 lines
1.4 KiB
JavaScript
/**
|
|
* Exponential Search
|
|
*
|
|
* The algorithm consists of two stages. The first stage determines a
|
|
* range in which the search key would reside if it were in the list.
|
|
* In the second stage, a binary search is performed on this range.
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
|
|
function binarySearch(arr, value, floor, ceiling) {
|
|
// Middle index
|
|
const mid = Math.floor((floor + ceiling) / 2)
|
|
|
|
// If value is at the mid position return this position
|
|
if (arr[mid] === value) {
|
|
return mid
|
|
}
|
|
|
|
if (floor > ceiling) return -1
|
|
|
|
// If the middle element is great than the value
|
|
// search the left part of the array
|
|
if (arr[mid] > value) {
|
|
return binarySearch(arr, value, floor, mid - 1)
|
|
// If the middle element is lower than the value
|
|
// search the right part of the array
|
|
} else {
|
|
return binarySearch(arr, value, mid + 1, ceiling)
|
|
}
|
|
}
|
|
|
|
function exponentialSearch(arr, length, value) {
|
|
// If value is the first element of the array return this position
|
|
if (arr[0] === value) {
|
|
return 0
|
|
}
|
|
|
|
// Find range for binary search
|
|
let i = 1
|
|
while (i < length && arr[i] <= value) {
|
|
i = i * 2
|
|
}
|
|
|
|
// Call binary search for the range found above
|
|
return binarySearch(arr, value, i / 2, Math.min(i, length))
|
|
}
|
|
|
|
export { binarySearch, exponentialSearch }
|
|
|
|
// const arr = [2, 3, 4, 10, 40, 65, 78, 100]
|
|
// const value = 78
|
|
// const result = exponentialSearch(arr, arr.length, value)
|