mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-04 07:29:47 +08:00

* chore: Switch to Node 20 + Vitest * chore: migrate to vitest mock functions * chore: code style (switch to prettier) * test: re-enable long-running test Seems the switch to Node 20 and Vitest has vastly improved the code's and / or the test's runtime! see #1193 * chore: code style * chore: fix failing tests * Updated Documentation in README.md * Update contribution guidelines to state usage of Prettier * fix: set prettier printWidth back to 80 * chore: apply updated code style automatically * fix: set prettier line endings to lf again * chore: apply updated code style automatically --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Lars Müller <34514239+appgurueu@users.noreply.github.com>
79 lines
2.2 KiB
JavaScript
79 lines
2.2 KiB
JavaScript
/*
|
|
*
|
|
* @file
|
|
* @title Composite Simpson's rule for definite integral evaluation
|
|
* @author: [ggkogkou](https://github.com/ggkogkou)
|
|
* @brief Calculate definite integrals using composite Simpson's numerical method
|
|
*
|
|
* @details The idea is to split the interval in an EVEN number N of intervals and use as interpolation points the xi
|
|
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
|
|
* first and last points of the interval of the integration [a, b].
|
|
*
|
|
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
|
|
* I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)}
|
|
*
|
|
* That means that the first and last indexed i f(xi) are multiplied by 1,
|
|
* the odd indexed f(xi) by 4 and the even by 2.
|
|
*
|
|
* N must be even number and a<b. By increasing N, we also increase precision
|
|
*
|
|
* More info: [Wikipedia link](https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule)
|
|
*
|
|
*/
|
|
|
|
function integralEvaluation(N, a, b, func) {
|
|
// Check if N is an even integer
|
|
let isNEven = true
|
|
if (N % 2 !== 0) isNEven = false
|
|
|
|
if (!Number.isInteger(N) || Number.isNaN(a) || Number.isNaN(b)) {
|
|
throw new TypeError('Expected integer N and finite a, b')
|
|
}
|
|
if (!isNEven) {
|
|
throw Error('N is not an even number')
|
|
}
|
|
if (N <= 0) {
|
|
throw Error('N has to be >= 2')
|
|
}
|
|
|
|
// Check if a < b
|
|
if (a > b) {
|
|
throw Error('a must be less or equal than b')
|
|
}
|
|
if (a === b) return 0
|
|
|
|
// Calculate the step h
|
|
const h = (b - a) / N
|
|
|
|
// Find interpolation points
|
|
let xi = a // initialize xi = x0
|
|
const pointsArray = []
|
|
|
|
// Find the sum {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)}
|
|
let temp
|
|
for (let i = 0; i < N + 1; i++) {
|
|
if (i === 0 || i === N) temp = func(xi)
|
|
else if (i % 2 === 0) temp = 2 * func(xi)
|
|
else temp = 4 * func(xi)
|
|
|
|
pointsArray.push(temp)
|
|
xi += h
|
|
}
|
|
|
|
// Calculate the integral
|
|
let result = h / 3
|
|
temp = pointsArray.reduce((acc, currValue) => acc + currValue, 0)
|
|
|
|
result *= temp
|
|
|
|
if (Number.isNaN(result)) {
|
|
throw Error(
|
|
"Result is NaN. The input interval doesn't belong to the functions domain"
|
|
)
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
export { integralEvaluation }
|