mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-04 07:29:47 +08:00

* feat: add row echelon matrix algorithm * test: add self-tests for row echelon algorithm * fix: replace rounding with float tolerance * chore: use correct style * fix: use error tolerance and segregate testcases * chore: add necessary explaining comments
151 lines
4.2 KiB
JavaScript
151 lines
4.2 KiB
JavaScript
/**
|
|
* Given a two dimensional matrix, find its row echelon form.
|
|
*
|
|
* For more info: https://en.wikipedia.org/wiki/Row_echelon_form
|
|
*
|
|
* @param {number[[]]} matrix - Two dimensional array of rational numbers.
|
|
* @returns {number[[]]} - Two dimensional array of rational numbers (row echelon form).
|
|
*
|
|
* @example
|
|
* const matrix = [
|
|
* [2,3,4,5,7],
|
|
* [9,8,4,0,9],
|
|
* [5,7,4,3,9],
|
|
* [3,4,0,2,1]
|
|
* ]
|
|
*
|
|
* const result = rowEchelon(matrix)
|
|
*
|
|
* // The function returns the corresponding row echelon form:
|
|
* // result:
|
|
* // [
|
|
* // [1, 1.5, 2, 2.5, 3.5],
|
|
* // [0, 1, 2.54545, 4.09091, 4.09091],
|
|
* // [0, 0, 1, 1.57692, 1.36539],
|
|
* // [0, 0, 0, 1, -0.25]
|
|
* // ]
|
|
*/
|
|
|
|
// Set a tolerance value for floating-point comparisons
|
|
const tolerance = 0.000001
|
|
|
|
// Check if all the rows have same length of elements
|
|
const isMatrixValid = (matrix) => {
|
|
let numRows = matrix.length
|
|
let numCols = matrix[0].length
|
|
for (let i = 0; i < numRows; i++) {
|
|
if (numCols !== matrix[i].length) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Check for input other than a 2D matrix
|
|
if (
|
|
!Array.isArray(matrix) ||
|
|
matrix.length === 0 ||
|
|
!Array.isArray(matrix[0])
|
|
) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
const checkNonZero = (currentRow, currentCol, matrix) => {
|
|
let numRows = matrix.length
|
|
for (let i = currentRow; i < numRows; i++) {
|
|
// Checks if the current element is not very near to zero.
|
|
if (!isTolerant(0, matrix[i][currentCol], tolerance)) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
const swapRows = (currentRow, withRow, matrix) => {
|
|
let numCols = matrix[0].length
|
|
let tempValue = 0
|
|
for (let j = 0; j < numCols; j++) {
|
|
tempValue = matrix[currentRow][j]
|
|
matrix[currentRow][j] = matrix[withRow][j]
|
|
matrix[withRow][j] = tempValue
|
|
}
|
|
}
|
|
|
|
// Select a pivot element in the current column to facilitate row operations.
|
|
// Pivot element is the first non-zero element found from the current row
|
|
// down to the last row.
|
|
const selectPivot = (currentRow, currentCol, matrix) => {
|
|
let numRows = matrix.length
|
|
for (let i = currentRow; i < numRows; i++) {
|
|
if (matrix[i][currentCol] !== 0) {
|
|
swapRows(currentRow, i, matrix)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// Multiply each element of the given row with a factor.
|
|
const scalarMultiplication = (currentRow, factor, matrix) => {
|
|
let numCols = matrix[0].length
|
|
for (let j = 0; j < numCols; j++) {
|
|
matrix[currentRow][j] *= factor
|
|
}
|
|
}
|
|
|
|
// Subtract one row from another row
|
|
const subtractRow = (currentRow, fromRow, matrix) => {
|
|
let numCols = matrix[0].length
|
|
for (let j = 0; j < numCols; j++) {
|
|
matrix[fromRow][j] -= matrix[currentRow][j]
|
|
}
|
|
}
|
|
|
|
// Check if two numbers are equal within a given tolerance
|
|
const isTolerant = (a, b, tolerance) => {
|
|
const absoluteDifference = Math.abs(a - b)
|
|
return absoluteDifference <= tolerance
|
|
}
|
|
|
|
const rowEchelon = (matrix) => {
|
|
// Check if the input matrix is valid; if not, throw an error.
|
|
if (!isMatrixValid(matrix)) {
|
|
throw new Error('Input is not a valid 2D matrix.')
|
|
}
|
|
|
|
let numRows = matrix.length
|
|
let numCols = matrix[0].length
|
|
let result = matrix
|
|
|
|
// Iterate through the rows (i) and columns (j) of the matrix.
|
|
for (let i = 0, j = 0; i < numRows && j < numCols; ) {
|
|
// If the current column has all zero elements below the current row,
|
|
// move to the next column.
|
|
if (!checkNonZero(i, j, result)) {
|
|
j++
|
|
continue
|
|
}
|
|
|
|
// Select a pivot element and normalize the current row.
|
|
selectPivot(i, j, result)
|
|
let factor = 1 / result[i][j]
|
|
scalarMultiplication(i, factor, result)
|
|
|
|
// Make elements below the pivot element zero by performing
|
|
// row operations on subsequent rows.
|
|
for (let x = i + 1; x < numRows; x++) {
|
|
factor = result[x][j]
|
|
if (isTolerant(0, factor, tolerance)) {
|
|
continue
|
|
}
|
|
scalarMultiplication(i, factor, result)
|
|
subtractRow(i, x, result)
|
|
factor = 1 / factor
|
|
scalarMultiplication(i, factor, result)
|
|
}
|
|
i++
|
|
}
|
|
return result
|
|
}
|
|
|
|
export { rowEchelon }
|