mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-04 07:29:47 +08:00

* chore: Switch to Node 20 + Vitest * chore: migrate to vitest mock functions * chore: code style (switch to prettier) * test: re-enable long-running test Seems the switch to Node 20 and Vitest has vastly improved the code's and / or the test's runtime! see #1193 * chore: code style * chore: fix failing tests * Updated Documentation in README.md * Update contribution guidelines to state usage of Prettier * fix: set prettier printWidth back to 80 * chore: apply updated code style automatically * fix: set prettier line endings to lf again * chore: apply updated code style automatically --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Lars Müller <34514239+appgurueu@users.noreply.github.com>
64 lines
1.9 KiB
JavaScript
64 lines
1.9 KiB
JavaScript
/**
|
|
*
|
|
* @title Midpoint rule for definite integral evaluation
|
|
* @author [ggkogkou](https://github.com/ggkogkou)
|
|
* @brief Calculate definite integrals with midpoint method
|
|
*
|
|
* @details The idea is to split the interval in a number N of intervals and use as interpolation points the xi
|
|
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
|
|
* first and last points of the interval of the integration [a, b].
|
|
*
|
|
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
|
|
* I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
|
|
*
|
|
* N must be > 0 and a<b. By increasing N, we also increase precision
|
|
*
|
|
* [More info link](https://tutorial.math.lamar.edu/classes/calcii/approximatingdefintegrals.aspx)
|
|
*
|
|
*/
|
|
|
|
function integralEvaluation(N, a, b, func) {
|
|
// Check if all restrictions are satisfied for the given N, a, b
|
|
if (!Number.isInteger(N) || Number.isNaN(a) || Number.isNaN(b)) {
|
|
throw new TypeError('Expected integer N and finite a, b')
|
|
}
|
|
if (N <= 0) {
|
|
throw Error('N has to be >= 2')
|
|
} // check if N > 0
|
|
if (a > b) {
|
|
throw Error('a must be less or equal than b')
|
|
} // Check if a < b
|
|
if (a === b) return 0 // If a === b integral is zero
|
|
|
|
// Calculate the step h
|
|
const h = (b - a) / N
|
|
|
|
// Find interpolation points
|
|
let xi = a // initialize xi = x0
|
|
const pointsArray = []
|
|
|
|
// Find the sum {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
|
|
let temp
|
|
for (let i = 0; i < N; i++) {
|
|
temp = func(xi + h / 2)
|
|
pointsArray.push(temp)
|
|
xi += h
|
|
}
|
|
|
|
// Calculate the integral
|
|
let result = h
|
|
temp = pointsArray.reduce((acc, currValue) => acc + currValue, 0)
|
|
|
|
result *= temp
|
|
|
|
if (Number.isNaN(result)) {
|
|
throw Error(
|
|
'Result is NaN. The input interval does not belong to the functions domain'
|
|
)
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
export { integralEvaluation }
|