mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-03 23:00:07 +08:00

* chore: Switch to Node 20 + Vitest * chore: migrate to vitest mock functions * chore: code style (switch to prettier) * test: re-enable long-running test Seems the switch to Node 20 and Vitest has vastly improved the code's and / or the test's runtime! see #1193 * chore: code style * chore: fix failing tests * Updated Documentation in README.md * Update contribution guidelines to state usage of Prettier * fix: set prettier printWidth back to 80 * chore: apply updated code style automatically * fix: set prettier line endings to lf again * chore: apply updated code style automatically --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Lars Müller <34514239+appgurueu@users.noreply.github.com>
96 lines
3.3 KiB
JavaScript
96 lines
3.3 KiB
JavaScript
// Wikipedia URL for General Matrix Multiplication Concepts: https://en.wikipedia.org/wiki/Matrix_multiplication
|
|
|
|
// This algorithm has multiple functions that ultimately check if the inputs are actually matrices and if two Matrices (that can be different sizes) can be multiplied together.
|
|
// matrices that are of the same size [2x2]x[2x2], and the second is the multiplication of two matrices that are not the same size [2x3]x[3x2].
|
|
|
|
// MatrixCheck tests to see if all of the rows of the matrix inputted have similar size columns
|
|
const matrixCheck = (matrix) => {
|
|
let columnNumb
|
|
for (let index = 0; index < matrix.length; index++) {
|
|
if (index === 0) {
|
|
columnNumb = matrix[index].length
|
|
} else if (matrix[index].length !== columnNumb) {
|
|
// The columns in this array are not equal
|
|
} else {
|
|
return columnNumb
|
|
}
|
|
}
|
|
}
|
|
|
|
// tests to see if the matrices have a like side, i.e. the row length on the first matrix matches the column length on the second matrix, or vice versa.
|
|
const twoMatricesCheck = (first, second) => {
|
|
const [firstRowLength, secondRowLength, firstColLength, secondColLength] = [
|
|
first.length,
|
|
second.length,
|
|
matrixCheck(first),
|
|
matrixCheck(second)
|
|
]
|
|
|
|
// These matrices do not have a common side
|
|
return (
|
|
firstRowLength === secondColLength && secondRowLength === firstColLength
|
|
)
|
|
}
|
|
|
|
// returns an empty array that has the same number of rows as the left matrix being multiplied.
|
|
// Uses Array.prototype.map() to loop over the first (or left) matrix and returns an empty array on each iteration.
|
|
const initiateEmptyArray = (first, second) => {
|
|
if (twoMatricesCheck(first, second)) {
|
|
const emptyArray = first.map(() => {
|
|
return ['']
|
|
})
|
|
return emptyArray
|
|
} else {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Finally, `matrixMult` uses `Array.prototype.push()`, multiple layers of nested `for` loops, the addition assignment `+=` operator and multiplication operator `*` to perform the dot product between two matrices of differing sizes.
|
|
// Dot product, takes the row of the first matrix and multiplies it by the column of the second matrix, the `twoMatricesCheck` tested to see if they were the same size already.
|
|
// The dot product for each iteration is then saved to its respective index into `multMatrix`.
|
|
export const matrixMult = (firstArray, secondArray) => {
|
|
const multMatrix = initiateEmptyArray(firstArray, secondArray)
|
|
for (let rm = 0; rm < firstArray.length; rm++) {
|
|
const rowMult = []
|
|
for (let col = 0; col < firstArray[0].length; col++) {
|
|
rowMult.push(firstArray[rm][col])
|
|
}
|
|
for (let cm = 0; cm < firstArray.length; cm++) {
|
|
const colMult = []
|
|
for (let row = 0; row < secondArray.length; row++) {
|
|
colMult.push(secondArray[row][cm])
|
|
}
|
|
let newNumb = 0
|
|
for (let index = 0; index < rowMult.length; index++) {
|
|
newNumb += rowMult[index] * colMult[index]
|
|
}
|
|
multMatrix[rm][cm] = newNumb
|
|
}
|
|
}
|
|
return multMatrix
|
|
}
|
|
|
|
// const firstMatrix = [
|
|
// [1, 2],
|
|
// [3, 4]
|
|
// ]
|
|
|
|
// const secondMatrix = [
|
|
// [5, 6],
|
|
// [7, 8]
|
|
// ]
|
|
|
|
// matrixMult(firstMatrix, secondMatrix) // [ [ 19, 22 ], [ 43, 50 ] ]
|
|
|
|
// const thirdMatrix = [
|
|
// [-1, 4, 1],
|
|
// [7, -6, 2]
|
|
// ]
|
|
// const fourthMatrix = [
|
|
// [2, -2],
|
|
// [5, 3],
|
|
// [3, 2]
|
|
// ]
|
|
|
|
// matrixMult(thirdMatrix, fourthMatrix) // [ [ 21, 16 ], [ -10, -28 ] ]
|