Files
JavaScript/Maths/Mandelbrot.js
Roland Hummel 86d333ee94 feat: Test running overhaul, switch to Prettier & reformat everything (#1407)
* chore: Switch to Node 20 + Vitest

* chore: migrate to vitest mock functions

* chore: code style (switch to prettier)

* test: re-enable long-running test

Seems the switch to Node 20 and Vitest has vastly improved the code's and / or the test's runtime!

see #1193

* chore: code style

* chore: fix failing tests

* Updated Documentation in README.md

* Update contribution guidelines to state usage of Prettier

* fix: set prettier printWidth back to 80

* chore: apply updated code style automatically

* fix: set prettier line endings to lf again

* chore: apply updated code style automatically

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Lars Müller <34514239+appgurueu@users.noreply.github.com>
2023-10-04 02:38:19 +05:30

158 lines
5.6 KiB
JavaScript

/**
* Method to generate the image of the Mandelbrot set.
*
* Two types of coordinates are used: image-coordinates that refer to the pixels and figure-coordinates that refer to
* the complex numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this method
* determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot set is roughly between
* "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates.
*
* The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n + c" does not diverge,
* i.e. remains bounded. Thus, a complex number "c" is a member of the Mandelbrot set if, when starting with "z_0 = 0"
* and applying the iteration repeatedly, the absolute value of "z_n" remains bounded for all "n > 0". Complex numbers
* can be written as "a + b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary
* component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a color-coding to indicate
* after how many steps in the series the numbers outside the set cross the divergence threshold. Images of the
* Mandelbrot set exhibit an elaborate and infinitely complicated boundary that reveals progressively ever-finer
* recursive detail at increasing magnifications, making the boundary of the Mandelbrot set a fractal curve.
*
* (description adapted from https://en.wikipedia.org/wiki/Mandelbrot_set)
* @see https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set
*
* @param {number} imageWidth The width of the rendered image.
* @param {number} imageHeight The height of the rendered image.
* @param {number} figureCenterX The x-coordinate of the center of the figure.
* @param {number} figureCenterY The y-coordinate of the center of the figure.
* @param {number} figureWidth The width of the figure.
* @param {number} maxStep Maximum number of steps to check for divergent behavior.
* @param {boolean} useDistanceColorCoding Render in color or black and white.
* @return {object} The RGB-data of the rendered Mandelbrot set.
*/
export function getRGBData(
imageWidth = 800,
imageHeight = 600,
figureCenterX = -0.6,
figureCenterY = 0,
figureWidth = 3.2,
maxStep = 50,
useDistanceColorCoding = true
) {
if (imageWidth <= 0) {
throw new Error('imageWidth should be greater than zero')
}
if (imageHeight <= 0) {
throw new Error('imageHeight should be greater than zero')
}
if (maxStep <= 0) {
throw new Error('maxStep should be greater than zero')
}
const rgbData = []
const figureHeight = (figureWidth / imageWidth) * imageHeight
// loop through the image-coordinates
for (let imageX = 0; imageX < imageWidth; imageX++) {
rgbData[imageX] = []
for (let imageY = 0; imageY < imageHeight; imageY++) {
// determine the figure-coordinates based on the image-coordinates
const figureX = figureCenterX + (imageX / imageWidth - 0.5) * figureWidth
const figureY =
figureCenterY + (imageY / imageHeight - 0.5) * figureHeight
const distance = getDistance(figureX, figureY, maxStep)
// color the corresponding pixel based on the selected coloring-function
rgbData[imageX][imageY] = useDistanceColorCoding
? colorCodedColorMap(distance)
: blackAndWhiteColorMap(distance)
}
}
return rgbData
}
/**
* Black and white color-coding that ignores the relative distance.
*
* The Mandelbrot set is black, everything else is white.
*
* @param {number} distance Distance until divergence threshold
* @return {object} The RGB-value corresponding to the distance.
*/
function blackAndWhiteColorMap(distance) {
return distance >= 1 ? [0, 0, 0] : [255, 255, 255]
}
/**
* Color-coding taking the relative distance into account.
*
* The Mandelbrot set is black.
*
* @param {number} distance Distance until divergence threshold
* @return {object} The RGB-value corresponding to the distance.
*/
function colorCodedColorMap(distance) {
if (distance >= 1) {
return [0, 0, 0]
} else {
// simplified transformation of HSV to RGB
// distance determines hue
const hue = 360 * distance
const saturation = 1
const val = 255
const hi = Math.floor(hue / 60) % 6
const f = hue / 60 - Math.floor(hue / 60)
const v = val
const p = 0
const q = Math.floor(val * (1 - f * saturation))
const t = Math.floor(val * (1 - (1 - f) * saturation))
switch (hi) {
case 0:
return [v, t, p]
case 1:
return [q, v, p]
case 2:
return [p, v, t]
case 3:
return [p, q, v]
case 4:
return [t, p, v]
default:
return [v, p, q]
}
}
}
/**
* Return the relative distance (ratio of steps taken to maxStep) after which the complex number
* constituted by this x-y-pair diverges.
*
* Members of the Mandelbrot set do not diverge so their distance is 1.
*
* @param {number} figureX The x-coordinate within the figure.
* @param {number} figureY The y-coordinate within the figure.
* @param {number} maxStep Maximum number of steps to check for divergent behavior.
* @return {number} The relative distance as the ratio of steps taken to maxStep.
*/
function getDistance(figureX, figureY, maxStep) {
let a = figureX
let b = figureY
let currentStep = 0
for (let step = 0; step < maxStep; step++) {
currentStep = step
const aNew = a * a - b * b + figureX
b = 2 * a * b + figureY
a = aNew
// divergence happens for all complex number with an absolute value
// greater than 4 (= divergence threshold)
if (a * a + b * b > 4) {
break
}
}
return currentStep / (maxStep - 1)
}