mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 00:01:37 +08:00
65 lines
1.6 KiB
JavaScript
65 lines
1.6 KiB
JavaScript
/**
|
|
* [QuickSelect](https://www.geeksforgeeks.org/quickselect-algorithm/) is an algorithm to find the kth smallest number
|
|
*
|
|
* Notes:
|
|
* -QuickSelect is related to QuickSort, thus has optimal best and average
|
|
* -case (O(n)) but unlikely poor worst case (O(n^2))
|
|
* -This implementation uses randomly selected pivots for better performance
|
|
*
|
|
* @complexity: O(n) (on average )
|
|
* @complexity: O(n^2) (worst case)
|
|
* @flow
|
|
*/
|
|
|
|
function QuickSelect(items, kth) {
|
|
if (kth < 1 || kth > items.length) {
|
|
throw new RangeError('Index Out of Bound')
|
|
}
|
|
|
|
return RandomizedSelect(items, 0, items.length - 1, kth)
|
|
}
|
|
|
|
function RandomizedSelect(items, left, right, i) {
|
|
if (left === right) return items[left]
|
|
|
|
const pivotIndex = RandomizedPartition(items, left, right)
|
|
const k = pivotIndex - left + 1
|
|
|
|
if (i === k) return items[pivotIndex]
|
|
if (i < k) return RandomizedSelect(items, left, pivotIndex - 1, i)
|
|
|
|
return RandomizedSelect(items, pivotIndex + 1, right, i - k)
|
|
}
|
|
|
|
function RandomizedPartition(items, left, right) {
|
|
const rand = getRandomInt(left, right)
|
|
Swap(items, rand, right)
|
|
return Partition(items, left, right)
|
|
}
|
|
|
|
function Partition(items, left, right) {
|
|
const x = items[right]
|
|
let pivotIndex = left - 1
|
|
|
|
for (let j = left; j < right; j++) {
|
|
if (items[j] <= x) {
|
|
pivotIndex++
|
|
Swap(items, pivotIndex, j)
|
|
}
|
|
}
|
|
|
|
Swap(items, pivotIndex + 1, right)
|
|
|
|
return pivotIndex + 1
|
|
}
|
|
|
|
function getRandomInt(min, max) {
|
|
return Math.floor(Math.random() * (max - min + 1)) + min
|
|
}
|
|
|
|
function Swap(arr, x, y) {
|
|
;[arr[x], arr[y]] = [arr[y], arr[x]]
|
|
}
|
|
|
|
export { QuickSelect }
|