mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-06 09:28:26 +08:00

* [CREATE] Problem 044 from Project Euler * [UPDATE] Code styling update * [UPDATE] Change return condition, added an input for main function, added tests for problem 44 * [UPDATE] minor styling fixes to standard javascript * [UPDATE] Fix parentheses in main function return
45 lines
1.3 KiB
JavaScript
45 lines
1.3 KiB
JavaScript
/**
|
||
* Problem 44 - Pentagon numbers
|
||
*
|
||
* @see {@link https://projecteuler.net/problem=44}
|
||
*
|
||
* Pentagonal numbers are generated by the formula, Pn=n(3n−1)/2. The first ten pentagonal numbers are:
|
||
* 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...
|
||
* It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 − 22 = 48, is not pentagonal.
|
||
* Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference are pentagonal and D = |Pk − Pj| is minimised; what is the value of D?
|
||
*
|
||
* @author ddaniel27
|
||
*/
|
||
|
||
function problem44 (k) {
|
||
if (k < 1) {
|
||
throw new Error('Invalid Input')
|
||
}
|
||
|
||
while (true) {
|
||
k++
|
||
const n = k * (3 * k - 1) / 2 // calculate Pk
|
||
|
||
for (let j = k - 1; j > 0; j--) {
|
||
const m = j * (3 * j - 1) / 2 // calculate all Pj < Pk
|
||
if (isPentagonal(n - m) && isPentagonal(n + m)) { // Check sum and difference
|
||
return n - m // return D
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Function to check if a number is pentagonal or not
|
||
* This function solves n
|
||
* applying the solution for a quadratic function
|
||
* @see {@link https://en.wikipedia.org/wiki/Quadratic_function}
|
||
*/
|
||
|
||
function isPentagonal (n) {
|
||
const pent = (Math.sqrt(24 * n + 1) + 1) / 6
|
||
return pent === Math.floor(pent)
|
||
}
|
||
|
||
export { problem44 }
|