mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 16:26:47 +08:00

* Created composite Simpson's integration method.Tests included * Minor corrections * Auto-update DIRECTORY.md * Styled with standard.js * chore: remove blank line * chore: remove blank line Co-authored-by: ggkogkou <ggkogkou@ggkogkou.gr> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Rak Laptudirm <raklaptudirm@gmail.com>
17 lines
824 B
JavaScript
17 lines
824 B
JavaScript
import { integralEvaluation } from '../SimpsonIntegration'
|
|
|
|
test('Should return the integral of f(x) = sqrt(x) in [1, 3] to be equal 2.797434', () => {
|
|
const result = integralEvaluation(16, 1, 3, (x) => { return Math.sqrt(x) })
|
|
expect(Number(result.toPrecision(7))).toBe(2.797434)
|
|
})
|
|
|
|
test('Should return the integral of f(x) = sqrt(x) + x^2 in [1, 3] to be equal 11.46410161', () => {
|
|
const result = integralEvaluation(64, 1, 3, (x) => { return Math.sqrt(x) + Math.pow(x, 2) })
|
|
expect(Number(result.toPrecision(10))).toBe(11.46410161)
|
|
})
|
|
|
|
test('Should return the integral of f(x) = log(x) + Pi*x^3 in [5, 12] to be equal 15809.9141543', () => {
|
|
const result = integralEvaluation(128, 5, 12, (x) => { return Math.log(x) + Math.PI * Math.pow(x, 3) })
|
|
expect(Number(result.toPrecision(12))).toBe(15809.9141543)
|
|
})
|