mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 08:16:50 +08:00
63 lines
2.0 KiB
JavaScript
63 lines
2.0 KiB
JavaScript
/**
|
|
* @function powLinear
|
|
* @description - The powLinear function is a power function with Linear O(n) complexity
|
|
* @param {number} base
|
|
* @param {number} exponent
|
|
* @returns {number}
|
|
* @example - powLinear(2, 2) => 4 --> 2 * 2
|
|
* @example - powLinear(3, 3) => 27 --> 3 * 3 * 3
|
|
*/
|
|
const powLinear = (base, exponent) => {
|
|
if (exponent < 0) {
|
|
base = 1 / base
|
|
exponent = -exponent
|
|
}
|
|
|
|
let result = 1
|
|
|
|
while (exponent--) { // Break the execution while the exponent will 0
|
|
result *= base
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
/**
|
|
* @function powFaster
|
|
* @description - The powFaster function is a power function with O(logN) complexity
|
|
* @param {number} base
|
|
* @param {number} exponent
|
|
* @returns {number}
|
|
* @example - powFaster(2, 2) => 4 --> 2 * 2
|
|
* @example - powFaster(3, 3) => 27 --> 3 * 3 * 3
|
|
*/
|
|
const powFaster = (base, exponent) => {
|
|
if (exponent < 2) { // explanation below - 1
|
|
return base && ([1, base][exponent] || powFaster(1 / base, -exponent))
|
|
}
|
|
|
|
if (exponent & 1) { // if the existing exponent is odd
|
|
return base * powFaster(base * base, exponent >> 1) // explanation below - 2
|
|
}
|
|
|
|
return powFaster(base * base, exponent / 2)
|
|
}
|
|
|
|
/**
|
|
* 1 - Magic of short circuit evaluation (&&, ||)
|
|
* if the base is 0 then it returns 0 cause 0 is falsy
|
|
* if the base is not 0 then it's must be truthy. after that, it will be executed the right portion of the && (AND) operator
|
|
* Now it checks the exponent by the help array index, is it 0 or 1.
|
|
* if the exponent is not 0 or 1 it's definitely less than 0, and a negative number is not a valid index number so it returns "undefined"
|
|
* if the expression is undefined mean -> falsy, the || (OR) operator evaluates the right portion that is a recursive function.
|
|
*/
|
|
|
|
/**
|
|
* 2 - Play with right shift bitwise operator (>>)
|
|
* right shift with any odd numbers it returns the floor number instead of float.
|
|
* E.g. if the number is 5, after right shifting with 1 it's will give us 2, not 2.5
|
|
* cause the right shift formula is --> x >> y = |x| / 2^y
|
|
*/
|
|
|
|
export { powLinear, powFaster }
|