/* Minimum Priority Queue * It is a part of heap data structure * A heap is a specific tree based data structure * in which all the nodes of tree are in a specific order. * that is the children are arranged in some * respect of their parents, can either be greater * or less than the parent. This makes it a min priority queue * or max priority queue. */ // Functions: insert, delete, peek, isEmpty, print, heapSort, sink class MinPriorityQueue { // calls the constructor and initializes the capacity constructor (c) { this.heap = [] this.capacity = c this.size = 0 } // inserts the key at the end and rearranges it // so that the binary heap is in appropriate order insert (key) { if (this.isFull()) return this.heap[this.size + 1] = key let k = this.size + 1 while (k > 1) { if (this.heap[k] < this.heap[Math.floor(k / 2)]) { const temp = this.heap[k] this.heap[k] = this.heap[Math.floor(k / 2)] this.heap[Math.floor(k / 2)] = temp } k = Math.floor(k / 2) } this.size++ } // returns the highest priority value peek () { return this.heap[1] } // returns boolean value whether the heap is empty or not isEmpty () { return this.size === 0 } // returns boolean value whether the heap is full or not isFull () { if (this.size === this.capacity) return true return false } // prints the heap print (output = value => console.log(value)) { output(this.heap.slice(1)) } // heap sorting can be done by performing // delete function to the number of times of the size of the heap // it returns reverse sort because it is a min priority queue heapSort () { for (let i = 1; i < this.capacity; i++) { this.delete() } } // this function reorders the heap after every delete function sink () { let k = 1 while (2 * k <= this.size || 2 * k + 1 <= this.size) { let minIndex if (this.heap[2 * k] >= this.heap[k]) { if (2 * k + 1 <= this.size && this.heap[2 * k + 1] >= this.heap[k]) { break } else if (2 * k + 1 > this.size) { break } } if (2 * k + 1 > this.size) { minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k } else { if ( this.heap[k] > this.heap[2 * k] || this.heap[k] > this.heap[2 * k + 1] ) { minIndex = this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1 } else { minIndex = k } } const temp = this.heap[k] this.heap[k] = this.heap[minIndex] this.heap[minIndex] = temp k = minIndex } } // deletes the highest priority value from the heap delete () { const min = this.heap[1] this.heap[1] = this.heap[this.size] this.heap[this.size] = min this.size-- this.sink() return min } } export { MinPriorityQueue }