/* The Levenshtein distance (a.k.a edit distance) is a measure of similarity between two strings. It is defined as the minimum number of changes required to convert string a into string b (this is done by inserting, deleting or replacing a character in string a). The smaller the Levenshtein distance, the more similar the strings are. This is a very common problem in the application of Dynamic Programming. */ const levenshteinDistance = (a, b) => { // Declaring array 'D' with rows = len(a) + 1 and columns = len(b) + 1: const distanceMatrix = Array(b.length + 1) .fill(null) .map(() => Array(a.length + 1).fill(null)) // Initializing first column: for (let i = 0; i <= a.length; i += 1) { distanceMatrix[0][i] = i } // Initializing first row: for (let j = 0; j <= b.length; j += 1) { distanceMatrix[j][0] = j } for (let j = 1; j <= b.length; j += 1) { for (let i = 1; i <= a.length; i += 1) { const indicator = a[i - 1] === b[j - 1] ? 0 : 1 // choosing the minimum of all three, vis-a-vis: distanceMatrix[j][i] = Math.min( distanceMatrix[j][i - 1] + 1, // deletion distanceMatrix[j - 1][i] + 1, // insertion distanceMatrix[j - 1][i - 1] + indicator // substitution ) } } return distanceMatrix[b.length][a.length] } export { levenshteinDistance }