import { agm } from '../ArithmeticGeometricMean.js' describe('Tests for AGM', () => { it('should be a function', () => { expect(typeof agm).toEqual('function') }) it('number of parameters should be 2', () => { expect(agm.length).toEqual(2) }) const m = 0x100 // scale for rand it('should return NaN if any or all params has a negative argument', () => { // I multiplied by minus one, because the sign inversion is more clearly visible expect(agm(-1 * Math.random() * m, Math.random() * m)).toBe(NaN) expect(agm(Math.random() * m, -1 * Math.random() * m)).toBe(NaN) expect(agm(-1 * Math.random() * m, -1 * Math.random() * m)).toBe(NaN) }) it('should return Infinity if any arg is Infinity and the other is not 0', () => { expect(agm(Math.random() * m + 1, Infinity)).toEqual(Infinity) expect(agm(Infinity, Math.random() * m + 1)).toEqual(Infinity) expect(agm(Infinity, Infinity)).toEqual(Infinity) }) it('should return NaN if some arg is Infinity and the other is 0', () => { expect(agm(0, Infinity)).toBe(NaN) expect(agm(Infinity, 0)).toBe(NaN) }) it('should return +0 if any or all args are +0 or -0, and return -0 if all are -0', () => { expect(agm(Math.random() * m, 0)).toBe(0) expect(agm(0, Math.random() * m)).toBe(0) expect(agm(Math.random() * m, -0)).toBe(0) expect(agm(-0, Math.random() * m)).toBe(0) expect(agm(0, -0)).toBe(0) expect(agm(-0, 0)).toBe(0) expect(agm(-0, -0)).toBe(-0) }) it('should return NaN if any or all args are NaN', () => { expect(agm(Math.random() * m, NaN)).toBe(NaN) expect(agm(NaN, Math.random() * m)).toBe(NaN) expect(agm(NaN, NaN)).toBe(NaN) }) it('should return an accurate approximation of the AGM between 2 valid input args', () => { // all the constants are provided by WolframAlpha expect(agm(1, 2)).toBeCloseTo(1.4567910310469068) expect(agm(2, 256)).toBeCloseTo(64.45940719438667) expect(agm(55555, 34)).toBeCloseTo(9933.4047239552) // test "unsafe" numbers expect(agm(2 ** 48, 3 ** 27)).toBeCloseTo(88506556379265.7) }) })