/* * * @file * @title Composite Simpson's rule for definite integral evaluation * @author: [ggkogkou](https://github.com/ggkogkou) * @brief Calculate definite integrals using composite Simpson's numerical method * * @details The idea is to split the interval in an EVEN number N of intervals and use as interpolation points the xi * for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the * first and last points of the interval of the integration [a, b]. * * We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula: * I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)} * * That means that the first and last indexed i f(xi) are multiplied by 1, * the odd indexed f(xi) by 4 and the even by 2. * * N must be even number and a= 2') } // Check if a < b if (a > b) { throw Error('a must be less or equal than b') } if (a === b) return 0 // Calculate the step h const h = (b - a) / N // Find interpolation points let xi = a // initialize xi = x0 const pointsArray = [] // Find the sum {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)} let temp for (let i = 0; i < N + 1; i++) { if (i === 0 || i === N) temp = func(xi) else if (i % 2 === 0) temp = 2 * func(xi) else temp = 4 * func(xi) pointsArray.push(temp) xi += h } // Calculate the integral let result = h / 3 temp = pointsArray.reduce((acc, currValue) => acc + currValue, 0) result *= temp if (Number.isNaN(result)) { throw Error( "Result is NaN. The input interval doesn't belong to the functions domain" ) } return result } export { integralEvaluation }