/** * @function powLinear * @description - The powLinear function is a power function with Linear O(n) complexity * @param {number} base * @param {number} exponent * @returns {number} * @example - powLinear(2, 2) => 4 --> 2 * 2 * @example - powLinear(3, 3) => 27 --> 3 * 3 * 3 */ const powLinear = (base, exponent) => { if (exponent < 0) { base = 1 / base exponent = -exponent } let result = 1 while (exponent--) { // Break the execution while the exponent will 0 result *= base } return result } /** * @function powFaster * @description - The powFaster function is a power function with O(logN) complexity * @param {number} base * @param {number} exponent * @returns {number} * @example - powFaster(2, 2) => 4 --> 2 * 2 * @example - powFaster(3, 3) => 27 --> 3 * 3 * 3 */ const powFaster = (base, exponent) => { if (exponent < 2) { // explanation below - 1 return base && ([1, base][exponent] || powFaster(1 / base, -exponent)) } if (exponent & 1) { // if the existing exponent is odd return base * powFaster(base * base, exponent >> 1) // explanation below - 2 } return powFaster(base * base, exponent / 2) } /** * 1 - Magic of short circuit evaluation (&&, ||) * if the base is 0 then it returns 0 cause 0 is falsy * if the base is not 0 then it's must be truthy. after that, it will be executed the right portion of the && (AND) operator * Now it checks the exponent by the help array index, is it 0 or 1. * if the exponent is not 0 or 1 it's definitely less than 0, and a negative number is not a valid index number so it returns "undefined" * if the expression is undefined mean -> falsy, the || (OR) operator evaluates the right portion that is a recursive function. */ /** * 2 - Play with right shift bitwise operator (>>) * right shift with any odd numbers it returns the floor number instead of float. * E.g. if the number is 5, after right shifting with 1 it's will give us 2, not 2.5 * cause the right shift formula is --> x >> y = |x| / 2^y */ export { powLinear, powFaster }