/** * * @title Midpoint rule for definite integral evaluation * @author [ggkogkou](https://github.com/ggkogkou) * @brief Calculate definite integrals with midpoint method * * @details The idea is to split the interval in a number N of intervals and use as interpolation points the xi * for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the * first and last points of the interval of the integration [a, b]. * * We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula: * I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} * * N must be > 0 and a= 2') } // check if N > 0 if (a > b) { throw Error('a must be less or equal than b') } // Check if a < b if (a === b) return 0 // If a === b integral is zero // Calculate the step h const h = (b - a) / N // Find interpolation points let xi = a // initialize xi = x0 const pointsArray = [] // Find the sum {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} let temp for (let i = 0; i < N; i++) { temp = func(xi + h / 2) pointsArray.push(temp) xi += h } // Calculate the integral let result = h temp = pointsArray.reduce((acc, currValue) => acc + currValue, 0) result *= temp if (Number.isNaN(result)) { throw Error( 'Result is NaN. The input interval does not belong to the functions domain' ) } return result } export { integralEvaluation }