/** * Method to generate the image of the Mandelbrot set. * * Two types of coordinates are used: image-coordinates that refer to the pixels and figure-coordinates that refer to * the complex numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this method * determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot set is roughly between * "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates. * * The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n + c" does not diverge, * i.e. remains bounded. Thus, a complex number "c" is a member of the Mandelbrot set if, when starting with "z_0 = 0" * and applying the iteration repeatedly, the absolute value of "z_n" remains bounded for all "n > 0". Complex numbers * can be written as "a + b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary * component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a color-coding to indicate * after how many steps in the series the numbers outside the set cross the divergence threshold. Images of the * Mandelbrot set exhibit an elaborate and infinitely complicated boundary that reveals progressively ever-finer * recursive detail at increasing magnifications, making the boundary of the Mandelbrot set a fractal curve. * * (description adapted from https://en.wikipedia.org/wiki/Mandelbrot_set) * @see https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set * * @param {number} imageWidth The width of the rendered image. * @param {number} imageHeight The height of the rendered image. * @param {number} figureCenterX The x-coordinate of the center of the figure. * @param {number} figureCenterY The y-coordinate of the center of the figure. * @param {number} figureWidth The width of the figure. * @param {number} maxStep Maximum number of steps to check for divergent behavior. * @param {boolean} useDistanceColorCoding Render in color or black and white. * @return {object} The RGB-data of the rendered Mandelbrot set. */ export function getRGBData( imageWidth = 800, imageHeight = 600, figureCenterX = -0.6, figureCenterY = 0, figureWidth = 3.2, maxStep = 50, useDistanceColorCoding = true ) { if (imageWidth <= 0) { throw new Error('imageWidth should be greater than zero') } if (imageHeight <= 0) { throw new Error('imageHeight should be greater than zero') } if (maxStep <= 0) { throw new Error('maxStep should be greater than zero') } const rgbData = [] const figureHeight = (figureWidth / imageWidth) * imageHeight // loop through the image-coordinates for (let imageX = 0; imageX < imageWidth; imageX++) { rgbData[imageX] = [] for (let imageY = 0; imageY < imageHeight; imageY++) { // determine the figure-coordinates based on the image-coordinates const figureX = figureCenterX + (imageX / imageWidth - 0.5) * figureWidth const figureY = figureCenterY + (imageY / imageHeight - 0.5) * figureHeight const distance = getDistance(figureX, figureY, maxStep) // color the corresponding pixel based on the selected coloring-function rgbData[imageX][imageY] = useDistanceColorCoding ? colorCodedColorMap(distance) : blackAndWhiteColorMap(distance) } } return rgbData } /** * Black and white color-coding that ignores the relative distance. * * The Mandelbrot set is black, everything else is white. * * @param {number} distance Distance until divergence threshold * @return {object} The RGB-value corresponding to the distance. */ function blackAndWhiteColorMap(distance) { return distance >= 1 ? [0, 0, 0] : [255, 255, 255] } /** * Color-coding taking the relative distance into account. * * The Mandelbrot set is black. * * @param {number} distance Distance until divergence threshold * @return {object} The RGB-value corresponding to the distance. */ function colorCodedColorMap(distance) { if (distance >= 1) { return [0, 0, 0] } else { // simplified transformation of HSV to RGB // distance determines hue const hue = 360 * distance const saturation = 1 const val = 255 const hi = Math.floor(hue / 60) % 6 const f = hue / 60 - Math.floor(hue / 60) const v = val const p = 0 const q = Math.floor(val * (1 - f * saturation)) const t = Math.floor(val * (1 - (1 - f) * saturation)) switch (hi) { case 0: return [v, t, p] case 1: return [q, v, p] case 2: return [p, v, t] case 3: return [p, q, v] case 4: return [t, p, v] default: return [v, p, q] } } } /** * Return the relative distance (ratio of steps taken to maxStep) after which the complex number * constituted by this x-y-pair diverges. * * Members of the Mandelbrot set do not diverge so their distance is 1. * * @param {number} figureX The x-coordinate within the figure. * @param {number} figureY The y-coordinate within the figure. * @param {number} maxStep Maximum number of steps to check for divergent behavior. * @return {number} The relative distance as the ratio of steps taken to maxStep. */ function getDistance(figureX, figureY, maxStep) { let a = figureX let b = figureY let currentStep = 0 for (let step = 0; step < maxStep; step++) { currentStep = step const aNew = a * a - b * b + figureX b = 2 * a * b + figureY a = aNew // divergence happens for all complex number with an absolute value // greater than 4 (= divergence threshold) if (a * a + b * b > 4) { break } } return currentStep / (maxStep - 1) }