/** * @author Eric Lavault * * Represents the decimal (or binary, octal, any base from 2 to 10) expansion * of a/b using euclidean division. * * Because this function is recursive, it may throw an error when reaching the * maximum call stack size. * * Returns an array containing : [ * 0: integer part of the division * 1: array of decimals (if any, or an empty array) * 2: indexOf 1st cycle digit in decimals array if a/b is periodic, or undef. * ] * * @see https://mathworld.wolfram.com/DecimalExpansion.html * * @param {number} a * @param {number} b * @param {number} [base=10] * @returns {array} */ export function decExp(a, b, base = 10, exp = [], d = {}, dlen = 0) { if (base < 2 || base > 10) { throw new RangeError('Unsupported base. Must be in range [2, 10]') } if (a === 0) { return [0, [], undefined] } if (a === b && dlen === 0) { return [1, [], undefined] } // d contains the dividends used so far and the corresponding index of its // euclidean division by b in the expansion array. d[a] = dlen++ if (a < b) { exp.push(0) return decExp(a * base, b, base, exp, d, dlen) } // Euclid's division lemma : a = bq + r const r = a % b const q = (a - r) / b // Decimal expansion (1st element is the integer part) exp.push(+q.toString(base)) if (r === 0) { // got a regular number (division terminates) return [exp[0], exp.slice(1), undefined] } // For the next iteration a = r * base // Check if `a` has already been used as a dividend, in which case it means // the expansion is periodic. if (a in d) { return [exp[0], exp.slice(1), d[a] - 1] } return decExp(a, b, base, exp, d, dlen) }