mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 00:01:37 +08:00
Make Fibonacci.js file comply with standard JS rules
This commit is contained in:
@ -72,11 +72,11 @@ const FibonacciDpWithoutRecursion = (number) => {
|
|||||||
// Using Matrix exponentiation to find n-th fibonacci in O(log n) time
|
// Using Matrix exponentiation to find n-th fibonacci in O(log n) time
|
||||||
|
|
||||||
const copyMatrix = (A) => {
|
const copyMatrix = (A) => {
|
||||||
return A.map(row => row.map(cell => cell));
|
return A.map(row => row.map(cell => cell))
|
||||||
}
|
}
|
||||||
|
|
||||||
const Identity = (size) => {
|
const Identity = (size) => {
|
||||||
const I = Array(size).fill(null).map(() => Array(size).fill());
|
const I = Array(size).fill(null).map(() => Array(size).fill())
|
||||||
return I.map((row, rowIdx) => row.map((_col, colIdx) => {
|
return I.map((row, rowIdx) => row.map((_col, colIdx) => {
|
||||||
return rowIdx === colIdx ? 1 : 0
|
return rowIdx === colIdx ? 1 : 0
|
||||||
}))
|
}))
|
||||||
@ -90,12 +90,12 @@ const matrixMultiply = (A, B) => {
|
|||||||
const l = A.length
|
const l = A.length
|
||||||
const m = B.length
|
const m = B.length
|
||||||
const n = B[0].length // Assuming non-empty matrices
|
const n = B[0].length // Assuming non-empty matrices
|
||||||
const C = Array(l).fill(null).map(() => Array(n).fill());
|
const C = Array(l).fill(null).map(() => Array(n).fill())
|
||||||
for(let i = 0; i < l; i++) {
|
for (let i = 0; i < l; i++) {
|
||||||
for(let j = 0; j < n; j++) {
|
for (let j = 0; j < n; j++) {
|
||||||
C[i][j] = 0
|
C[i][j] = 0
|
||||||
for(let k = 0; k < m; k++) {
|
for (let k = 0; k < m; k++) {
|
||||||
C[i][j] += A[i][k]*B[k][j]
|
C[i][j] += A[i][k] * B[k][j]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -105,15 +105,15 @@ const matrixMultiply = (A, B) => {
|
|||||||
// A is a square matrix
|
// A is a square matrix
|
||||||
const matrixExpo = (A, n) => {
|
const matrixExpo = (A, n) => {
|
||||||
A = copyMatrix(A)
|
A = copyMatrix(A)
|
||||||
if(n == 0) return Identity(A.length) // Identity matrix
|
if (n === 0) return Identity(A.length) // Identity matrix
|
||||||
if(n == 1) return A
|
if (n === 1) return A
|
||||||
|
|
||||||
// Just like Binary exponentiation mentioned in ./BinaryExponentiationIterative.js
|
// Just like Binary exponentiation mentioned in ./BinaryExponentiationIterative.js
|
||||||
let result = Identity(A.length)
|
let result = Identity(A.length)
|
||||||
while(n > 0) {
|
while (n > 0) {
|
||||||
if(n%2 !== 0) result = matrixMultiply(result, A)
|
if (n % 2 !== 0) result = matrixMultiply(result, A)
|
||||||
n = Math.floor(n/2)
|
n = Math.floor(n / 2)
|
||||||
if(n > 0) A = matrixMultiply(A, A)
|
if (n > 0) A = matrixMultiply(A, A)
|
||||||
}
|
}
|
||||||
return result
|
return result
|
||||||
}
|
}
|
||||||
@ -129,13 +129,13 @@ const FibonacciMatrixExpo = (n) => {
|
|||||||
|
|
||||||
// F(n, n-1) = pow(A, n-1) * F(1, 0)
|
// F(n, n-1) = pow(A, n-1) * F(1, 0)
|
||||||
|
|
||||||
if(n === 0) return 0;
|
if (n === 0) return 0
|
||||||
|
|
||||||
const A = [
|
const A = [
|
||||||
[1, 1],
|
[1, 1],
|
||||||
[1, 0]
|
[1, 0]
|
||||||
]
|
]
|
||||||
const poweredA = matrixExpo(A, n-1) // A raise to the power n
|
const poweredA = matrixExpo(A, n - 1) // A raise to the power n
|
||||||
let F = [
|
let F = [
|
||||||
[1],
|
[1],
|
||||||
[0]
|
[0]
|
||||||
|
Reference in New Issue
Block a user