mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-04 15:39:42 +08:00
Added EulersTotientFunction function to the Maths Folder
This commit is contained in:
28
Maths/EulersTotientFunction.js
Normal file
28
Maths/EulersTotientFunction.js
Normal file
@ -0,0 +1,28 @@
|
||||
/*
|
||||
author sandyboypraper
|
||||
|
||||
Here is the EulerTotientFunction.
|
||||
it is also represented by phi
|
||||
|
||||
so EulersTotientFunction(n) (or phi(n)) is the count of numbers in {1,2,3,....,n} that are relatively
|
||||
prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1.
|
||||
*/
|
||||
|
||||
const gcd_two_numbers = (x, y) => {
|
||||
// x is smaller than y
|
||||
// let gcd of x and y is gcdXY
|
||||
// so it devides x and y completely
|
||||
// so gcdXY should also devides y%x (y = gcdXY*a and x = gcdXY*b and y%x = y - x*k so y%x = gcdXY(a - b*k))
|
||||
// and gcd(x,y) is equals to gcd(y%x , x)
|
||||
return x == 0 ? y : gcd_two_numbers(y%x , x);
|
||||
}
|
||||
|
||||
const EulersTotientFunction = (n) => {
|
||||
let countOfRelativelyPrimeNumbers = 1;
|
||||
for(let iterator = 2; iterator<=n; iterator++)
|
||||
if(gcd_two_numbers(iterator , n) == 1)countOfRelativelyPrimeNumbers++;
|
||||
|
||||
return countOfRelativelyPrimeNumbers;
|
||||
}
|
||||
|
||||
export {EulersTotientFunction}
|
11
Maths/test/EulersTotientFunction.test.js
Normal file
11
Maths/test/EulersTotientFunction.test.js
Normal file
@ -0,0 +1,11 @@
|
||||
import { EulersTotientFunction } from '../EulersTotientFunction';
|
||||
|
||||
describe('eulersTotientFunction', () => {
|
||||
it('is a function', () => {
|
||||
expect(typeof EulersTotientFunction).toEqual('function')
|
||||
})
|
||||
it('should return the phi of a given number', () => {
|
||||
const phiOfNumber = EulersTotientFunction(10)
|
||||
expect(phiOfNumber).toBe(4)
|
||||
})
|
||||
})
|
Reference in New Issue
Block a user