algorithm: binary lifting (#1218)

* Algorithm: BinaryLifting

* Update BinaryLifting.js

* made the requested changes

* added more comments
This commit is contained in:
Adrito Mukherjee
2022-10-27 19:26:13 +05:30
committed by GitHub
parent 945657a98f
commit d9d085faa7
2 changed files with 164 additions and 0 deletions

82
Graphs/BinaryLifting.js Normal file
View File

@ -0,0 +1,82 @@
/**
* Author: Adrito Mukherjee
* Binary Lifting implementation in Javascript
* Binary Lifting is a technique that is used to find the kth ancestor of a node in a rooted tree with N nodes
* The technique requires preprocessing the tree in O(N log N) using dynamic programming
* The techniqe can answer Q queries about kth ancestor of any node in O(Q log N)
* It is faster than the naive algorithm that answers Q queries with complexity O(Q K)
* It can be used to find Lowest Common Ancestor of two nodes in O(log N)
* Tutorial on Binary Lifting: https://codeforces.com/blog/entry/100826
*/
class BinaryLifting {
constructor (root, tree) {
this.root = root
this.connections = new Map()
this.up = new Map() // up[node][i] stores the 2^i-th parent of node
for (const [i, j] of tree) {
this.addEdge(i, j)
}
this.log = Math.ceil(Math.log2(this.connections.size))
this.dfs(root, root)
}
addNode (node) {
// Function to add a node to the tree (connection represented by set)
this.connections.set(node, new Set())
}
addEdge (node1, node2) {
// Function to add an edge (adds the node too if they are not present in the tree)
if (!this.connections.has(node1)) {
this.addNode(node1)
}
if (!this.connections.has(node2)) {
this.addNode(node2)
}
this.connections.get(node1).add(node2)
this.connections.get(node2).add(node1)
}
dfs (node, parent) {
// The dfs function calculates 2^i-th ancestor of all nodes for i ranging from 0 to this.log
// We make use of the fact the two consecutive jumps of length 2^(i-1) make the total jump length 2^i
this.up.set(node, new Map())
this.up.get(node).set(0, parent)
for (let i = 1; i < this.log; i++) {
this.up
.get(node)
.set(i, this.up.get(this.up.get(node).get(i - 1)).get(i - 1))
}
for (const child of this.connections.get(node)) {
if (child !== parent) this.dfs(child, node)
}
}
kthAncestor (node, k) {
// if value of k is more than or equal to the number of total nodes, we return the root of the graph
if (k >= this.connections.size) {
return this.root
}
// if i-th bit is set in the binary representation of k, we jump from a node to its 2^i-th ancestor
// so after checking all bits of k, we will have made jumps of total length k, in just log k steps
for (let i = 0; i < this.log; i++) {
if (k & (1 << i)) {
node = this.up.get(node).get(i)
}
}
return node
}
}
function binaryLifting (root, tree, queries) {
const graphObject = new BinaryLifting(root, tree)
const ancestors = []
for (const [node, k] of queries) {
const ancestor = graphObject.kthAncestor(node, k)
ancestors.push(ancestor)
}
return ancestors
}
export default binaryLifting

View File

@ -0,0 +1,82 @@
import binaryLifting from '../BinaryLifting'
// The graph for Test Case 1 looks like this:
//
// 0
// /|\
// / | \
// 1 3 5
// / \ \
// 2 4 6
// \
// 7
// / \
// 11 8
// \
// 9
// \
// 10
test('Test case 1', () => {
const root = 0
const graph = [
[0, 1],
[0, 3],
[0, 5],
[5, 6],
[1, 2],
[1, 4],
[4, 7],
[7, 11],
[7, 8],
[8, 9],
[9, 10]
]
const queries = [
[2, 1],
[6, 1],
[7, 2],
[8, 2],
[10, 2],
[10, 3],
[10, 5],
[11, 3]
]
const kthAncestors = binaryLifting(root, graph, queries)
expect(kthAncestors).toEqual([1, 5, 1, 4, 8, 7, 1, 1])
})
// The graph for Test Case 2 looks like this:
//
// 0
// / \
// 1 2
// / \ \
// 3 4 5
// / / \
// 6 7 8
test('Test case 2', () => {
const root = 0
const graph = [
[0, 1],
[0, 2],
[1, 3],
[1, 4],
[2, 5],
[3, 6],
[5, 7],
[5, 8]
]
const queries = [
[2, 1],
[3, 1],
[3, 2],
[6, 2],
[7, 3],
[8, 2],
[8, 3]
]
const kthAncestors = binaryLifting(root, graph, queries)
expect(kthAncestors).toEqual([0, 1, 0, 1, 0, 2, 0])
})