mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 00:01:37 +08:00
algorithm: binary lifting (#1218)
* Algorithm: BinaryLifting * Update BinaryLifting.js * made the requested changes * added more comments
This commit is contained in:
82
Graphs/BinaryLifting.js
Normal file
82
Graphs/BinaryLifting.js
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
/**
|
||||||
|
* Author: Adrito Mukherjee
|
||||||
|
* Binary Lifting implementation in Javascript
|
||||||
|
* Binary Lifting is a technique that is used to find the kth ancestor of a node in a rooted tree with N nodes
|
||||||
|
* The technique requires preprocessing the tree in O(N log N) using dynamic programming
|
||||||
|
* The techniqe can answer Q queries about kth ancestor of any node in O(Q log N)
|
||||||
|
* It is faster than the naive algorithm that answers Q queries with complexity O(Q K)
|
||||||
|
* It can be used to find Lowest Common Ancestor of two nodes in O(log N)
|
||||||
|
* Tutorial on Binary Lifting: https://codeforces.com/blog/entry/100826
|
||||||
|
*/
|
||||||
|
|
||||||
|
class BinaryLifting {
|
||||||
|
constructor (root, tree) {
|
||||||
|
this.root = root
|
||||||
|
this.connections = new Map()
|
||||||
|
this.up = new Map() // up[node][i] stores the 2^i-th parent of node
|
||||||
|
for (const [i, j] of tree) {
|
||||||
|
this.addEdge(i, j)
|
||||||
|
}
|
||||||
|
this.log = Math.ceil(Math.log2(this.connections.size))
|
||||||
|
this.dfs(root, root)
|
||||||
|
}
|
||||||
|
|
||||||
|
addNode (node) {
|
||||||
|
// Function to add a node to the tree (connection represented by set)
|
||||||
|
this.connections.set(node, new Set())
|
||||||
|
}
|
||||||
|
|
||||||
|
addEdge (node1, node2) {
|
||||||
|
// Function to add an edge (adds the node too if they are not present in the tree)
|
||||||
|
if (!this.connections.has(node1)) {
|
||||||
|
this.addNode(node1)
|
||||||
|
}
|
||||||
|
if (!this.connections.has(node2)) {
|
||||||
|
this.addNode(node2)
|
||||||
|
}
|
||||||
|
this.connections.get(node1).add(node2)
|
||||||
|
this.connections.get(node2).add(node1)
|
||||||
|
}
|
||||||
|
|
||||||
|
dfs (node, parent) {
|
||||||
|
// The dfs function calculates 2^i-th ancestor of all nodes for i ranging from 0 to this.log
|
||||||
|
// We make use of the fact the two consecutive jumps of length 2^(i-1) make the total jump length 2^i
|
||||||
|
this.up.set(node, new Map())
|
||||||
|
this.up.get(node).set(0, parent)
|
||||||
|
for (let i = 1; i < this.log; i++) {
|
||||||
|
this.up
|
||||||
|
.get(node)
|
||||||
|
.set(i, this.up.get(this.up.get(node).get(i - 1)).get(i - 1))
|
||||||
|
}
|
||||||
|
for (const child of this.connections.get(node)) {
|
||||||
|
if (child !== parent) this.dfs(child, node)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kthAncestor (node, k) {
|
||||||
|
// if value of k is more than or equal to the number of total nodes, we return the root of the graph
|
||||||
|
if (k >= this.connections.size) {
|
||||||
|
return this.root
|
||||||
|
}
|
||||||
|
// if i-th bit is set in the binary representation of k, we jump from a node to its 2^i-th ancestor
|
||||||
|
// so after checking all bits of k, we will have made jumps of total length k, in just log k steps
|
||||||
|
for (let i = 0; i < this.log; i++) {
|
||||||
|
if (k & (1 << i)) {
|
||||||
|
node = this.up.get(node).get(i)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return node
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function binaryLifting (root, tree, queries) {
|
||||||
|
const graphObject = new BinaryLifting(root, tree)
|
||||||
|
const ancestors = []
|
||||||
|
for (const [node, k] of queries) {
|
||||||
|
const ancestor = graphObject.kthAncestor(node, k)
|
||||||
|
ancestors.push(ancestor)
|
||||||
|
}
|
||||||
|
return ancestors
|
||||||
|
}
|
||||||
|
|
||||||
|
export default binaryLifting
|
82
Graphs/test/BinaryLifting.test.js
Normal file
82
Graphs/test/BinaryLifting.test.js
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
import binaryLifting from '../BinaryLifting'
|
||||||
|
|
||||||
|
// The graph for Test Case 1 looks like this:
|
||||||
|
//
|
||||||
|
// 0
|
||||||
|
// /|\
|
||||||
|
// / | \
|
||||||
|
// 1 3 5
|
||||||
|
// / \ \
|
||||||
|
// 2 4 6
|
||||||
|
// \
|
||||||
|
// 7
|
||||||
|
// / \
|
||||||
|
// 11 8
|
||||||
|
// \
|
||||||
|
// 9
|
||||||
|
// \
|
||||||
|
// 10
|
||||||
|
|
||||||
|
test('Test case 1', () => {
|
||||||
|
const root = 0
|
||||||
|
const graph = [
|
||||||
|
[0, 1],
|
||||||
|
[0, 3],
|
||||||
|
[0, 5],
|
||||||
|
[5, 6],
|
||||||
|
[1, 2],
|
||||||
|
[1, 4],
|
||||||
|
[4, 7],
|
||||||
|
[7, 11],
|
||||||
|
[7, 8],
|
||||||
|
[8, 9],
|
||||||
|
[9, 10]
|
||||||
|
]
|
||||||
|
const queries = [
|
||||||
|
[2, 1],
|
||||||
|
[6, 1],
|
||||||
|
[7, 2],
|
||||||
|
[8, 2],
|
||||||
|
[10, 2],
|
||||||
|
[10, 3],
|
||||||
|
[10, 5],
|
||||||
|
[11, 3]
|
||||||
|
]
|
||||||
|
const kthAncestors = binaryLifting(root, graph, queries)
|
||||||
|
expect(kthAncestors).toEqual([1, 5, 1, 4, 8, 7, 1, 1])
|
||||||
|
})
|
||||||
|
|
||||||
|
// The graph for Test Case 2 looks like this:
|
||||||
|
//
|
||||||
|
// 0
|
||||||
|
// / \
|
||||||
|
// 1 2
|
||||||
|
// / \ \
|
||||||
|
// 3 4 5
|
||||||
|
// / / \
|
||||||
|
// 6 7 8
|
||||||
|
|
||||||
|
test('Test case 2', () => {
|
||||||
|
const root = 0
|
||||||
|
const graph = [
|
||||||
|
[0, 1],
|
||||||
|
[0, 2],
|
||||||
|
[1, 3],
|
||||||
|
[1, 4],
|
||||||
|
[2, 5],
|
||||||
|
[3, 6],
|
||||||
|
[5, 7],
|
||||||
|
[5, 8]
|
||||||
|
]
|
||||||
|
const queries = [
|
||||||
|
[2, 1],
|
||||||
|
[3, 1],
|
||||||
|
[3, 2],
|
||||||
|
[6, 2],
|
||||||
|
[7, 3],
|
||||||
|
[8, 2],
|
||||||
|
[8, 3]
|
||||||
|
]
|
||||||
|
const kthAncestors = binaryLifting(root, graph, queries)
|
||||||
|
expect(kthAncestors).toEqual([0, 1, 0, 1, 0, 2, 0])
|
||||||
|
})
|
Reference in New Issue
Block a user