mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-04 15:39:42 +08:00
chore: Added BellmanFord (#679)
* Added BellmanFord * Add References for BellmanFord * Style code using standard.js * Add tests and modify code * Fixed BellmanFord test file * Add BellmanFord and tests
This commit is contained in:
56
Graphs/BellmanFord.js
Normal file
56
Graphs/BellmanFord.js
Normal file
@ -0,0 +1,56 @@
|
||||
/*
|
||||
The Bellman–Ford algorithm is an algorithm that computes shortest paths
|
||||
from a single source vertex to all of the other vertices in a weighted digraph.
|
||||
It also detects negative weight cycle.
|
||||
|
||||
Complexity:
|
||||
Worst-case performance O(VE)
|
||||
Best-case performance O(E)
|
||||
Worst-case space complexity O(V)
|
||||
|
||||
Reference:
|
||||
https://en.wikipedia.org/wiki/Bellman–Ford_algorithm
|
||||
https://cp-algorithms.com/graph/bellman_ford.html
|
||||
|
||||
*/
|
||||
|
||||
/**
|
||||
*
|
||||
* @param graph Graph in the format (u, v, w) where
|
||||
* the edge is from vertex u to v. And weight
|
||||
* of the edge is w.
|
||||
* @param V Number of vertices in graph
|
||||
* @param E Number of edges in graph
|
||||
* @param src Starting node
|
||||
* @param dest Destination node
|
||||
* @returns Shortest distance from source to destination
|
||||
*/
|
||||
function BellmanFord (graph, V, E, src, dest) {
|
||||
// Initialize distance of all vertices as infinite.
|
||||
const dis = Array(V).fill(Infinity)
|
||||
// initialize distance of source as 0
|
||||
dis[src] = 0
|
||||
|
||||
// Relax all edges |V| - 1 times. A simple
|
||||
// shortest path from src to any other
|
||||
// vertex can have at-most |V| - 1 edges
|
||||
for (let i = 0; i < V - 1; i++) {
|
||||
for (let j = 0; j < E; j++) {
|
||||
if ((dis[graph[j][0]] + graph[j][2]) < dis[graph[j][1]]) { dis[graph[j][1]] = dis[graph[j][0]] + graph[j][2] }
|
||||
}
|
||||
}
|
||||
// check for negative-weight cycles.
|
||||
for (let i = 0; i < E; i++) {
|
||||
const x = graph[i][0]
|
||||
const y = graph[i][1]
|
||||
const weight = graph[i][2]
|
||||
if ((dis[x] !== Infinity) && (dis[x] + weight < dis[y])) {
|
||||
return null
|
||||
}
|
||||
}
|
||||
for (let i = 0; i < V; i++) {
|
||||
if (i === dest) return dis[i]
|
||||
}
|
||||
}
|
||||
|
||||
export { BellmanFord }
|
34
Graphs/test/BellmanFord.test.js
Normal file
34
Graphs/test/BellmanFord.test.js
Normal file
@ -0,0 +1,34 @@
|
||||
import { BellmanFord } from '../BellmanFord.js'
|
||||
|
||||
test('Test Case 1', () => {
|
||||
const V = 5
|
||||
const E = 8
|
||||
const destination = 3
|
||||
const graph = [[0, 1, -1], [0, 2, 4],
|
||||
[1, 2, 3], [1, 3, 2],
|
||||
[1, 4, 2], [3, 2, 5],
|
||||
[3, 1, 1], [4, 3, -3]]
|
||||
const dist = BellmanFord(graph, V, E, 0, destination)
|
||||
expect(dist).toBe(-2)
|
||||
})
|
||||
test('Test Case 2', () => {
|
||||
const V = 6
|
||||
const E = 9
|
||||
const destination = 4
|
||||
const graph = [[0, 1, 3], [0, 3, 6],
|
||||
[0, 5, -1], [1, 2, -3],
|
||||
[1, 4, -2], [5, 2, 5],
|
||||
[2, 3, 1], [4, 3, 5], [5, 4, 2]]
|
||||
const dist = BellmanFord(graph, V, E, 0, destination)
|
||||
expect(dist).toBe(1)
|
||||
})
|
||||
test('Test Case 3', () => {
|
||||
const V = 4
|
||||
const E = 5
|
||||
const destination = 1
|
||||
const graph = [[0, 3, -1], [0, 2, 4],
|
||||
[3, 2, 2], [3, 1, 5],
|
||||
[2, 1, -1]]
|
||||
const dist = BellmanFord(graph, V, E, 0, destination)
|
||||
expect(dist).toBe(0)
|
||||
})
|
Reference in New Issue
Block a user