Merge pull request #608 from MarkSFrancis/shuf

Added shuf, a way to get a random sample from a large dataset
This commit is contained in:
Rak Laptudirm
2021-05-21 21:40:11 +05:30
committed by GitHub
2 changed files with 97 additions and 0 deletions

View File

@ -75,6 +75,7 @@
* [MinimumCostPath](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/MinimumCostPath.js) * [MinimumCostPath](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/MinimumCostPath.js)
* [NumberOfSubsetEqualToGivenSum](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/NumberOfSubsetEqualToGivenSum.js) * [NumberOfSubsetEqualToGivenSum](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/NumberOfSubsetEqualToGivenSum.js)
* [SieveOfEratosthenes](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/SieveOfEratosthenes.js) * [SieveOfEratosthenes](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/SieveOfEratosthenes.js)
* [Shuf](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/Shuf.js)
* [SudokuSolver](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/SudokuSolver.js) * [SudokuSolver](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/SudokuSolver.js)
* [TrappingRainWater](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/TrappingRainWater.js) * [TrappingRainWater](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/TrappingRainWater.js)
* [ZeroOneKnapsack](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/ZeroOneKnapsack.js) * [ZeroOneKnapsack](https://github.com/TheAlgorithms/Javascript/blob/master/Dynamic-Programming/ZeroOneKnapsack.js)

View File

@ -0,0 +1,96 @@
/*
Given a data set of an unknown size,
Get a random sample in a random order
It's used in data analytics, often as a way to get a small random sample from a data lake or warehouse, or from a large CSV file
*/
function shuf (datasetSource, sampleSize) {
const output = fillBaseSample(datasetSource, sampleSize)
return randomizeOutputFromDataset(datasetSource, output)
}
/**
* Fills the output if possible, with the minimum number of values
* @param {Iterable.<T>} datasetSource The iterable source of data
* @param {number} sampleSize The size of the sample to extract from the dataset
* @returns {Array.<T>} The random sample, as an array
* @template T
*/
function fillBaseSample (datasetSource, sampleSize) {
let filledIndexes = []
let output = new Array(sampleSize)
// Spread data out filling the array
while (true) {
const iterator = datasetSource.next()
if (iterator.done) break
let insertTo = Math.floor(Math.random() * output.length)
while (filledIndexes.includes(insertTo)) {
insertTo++
if (insertTo === output.length) {
insertTo = 0
}
}
output[insertTo] = {
value: iterator.value
}
filledIndexes = [...filledIndexes, insertTo]
if (filledIndexes.length === sampleSize) {
break
}
}
if (filledIndexes.length < output.length) {
// Not a large enough dataset to fill the sample - trim empty values
output = output.filter((_, i) => filledIndexes.includes(i))
}
return output.map((o) => o.value)
}
/**
* Replaces values in the output randomly with new ones from the dataset
* @param {Iterable.<T>} datasetSource The iterable source of data
* @param {Array.<T>} output The output so far, filled with data
* @returns {Array.<T>} The random sample, as an array
* @template T
*/
function randomizeOutputFromDataset (datasetSource, output) {
const newOutput = [...output]
let readSoFar = output.length
while (true) {
const iterator = datasetSource.next()
if (iterator.done) break
readSoFar++
const insertTo = Math.floor(Math.random() * readSoFar)
if (insertTo < newOutput.length) {
newOutput[insertTo] = iterator.value
}
}
return newOutput
}
const main = () => {
/**
* Generates a random range of data, with values between 0 and 2^31 - 1
* @param {number} length The number of data items to generate
* @returns {Iterable<number>} Random iterable data
*/
function * generateRandomData (length) {
const maxValue = Math.pow(2, 31) - 1
for (let i = 0; i < length; i++) {
yield Math.floor(Math.random() * maxValue)
}
}
const source = generateRandomData(1000)
const result = shuf(source, 10)
console.log(result)
}
main()