mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 16:26:47 +08:00
Added shuf
This commit is contained in:
96
Dynamic-Programming/Shuf.js
Normal file
96
Dynamic-Programming/Shuf.js
Normal file
@ -0,0 +1,96 @@
|
||||
/*
|
||||
Given a data set of an unknown size,
|
||||
Get a random sample in a random order
|
||||
It's used in data analytics, often as a way to get a small random sample from a data lake or warehouse, or from a large CSV file
|
||||
*/
|
||||
function shuf(datasetSource, sampleSize) {
|
||||
let output = fillBaseSample(datasetSource, sampleSize);
|
||||
|
||||
return randomizeOutputFromDataset(datasetSource, output);
|
||||
}
|
||||
|
||||
/**
|
||||
* Fills the output if possible, with the minimum number of values
|
||||
* @param {Iterable.<T>} datasetSource The iterable source of data
|
||||
* @param {number} sampleSize The size of the sample to extract from the dataset
|
||||
* @returns {Array.<T>} The random sample, as an array
|
||||
* @template T
|
||||
*/
|
||||
function fillBaseSample(datasetSource, sampleSize) {
|
||||
let filledIndexes = [];
|
||||
let output = new Array(sampleSize);
|
||||
|
||||
// Spread data out filling the array
|
||||
while (true) {
|
||||
const iterator = datasetSource.next();
|
||||
if (iterator.done) break;
|
||||
|
||||
let insertTo = Math.floor(Math.random() * output.length);
|
||||
while (filledIndexes.includes(insertTo)) {
|
||||
insertTo++;
|
||||
if (insertTo === output.length) {
|
||||
insertTo = 0;
|
||||
}
|
||||
}
|
||||
output[insertTo] = {
|
||||
value: iterator.value,
|
||||
};
|
||||
|
||||
filledIndexes = [...filledIndexes, insertTo];
|
||||
|
||||
if (filledIndexes.length === sampleSize) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (filledIndexes.length < output.length) {
|
||||
// Not a large enough dataset to fill the sample - trim empty values
|
||||
output = output.filter((_, i) => filledIndexes.includes(i));
|
||||
}
|
||||
|
||||
return output.map((o) => o.value);
|
||||
}
|
||||
|
||||
/**
|
||||
* Replaces values in the output randomly with new ones from the dataset
|
||||
* @param {Iterable.<T>} datasetSource The iterable source of data
|
||||
* @param {Array.<T>} output The output so far, filled with data
|
||||
* @returns {Array.<T>} The random sample, as an array
|
||||
* @template T
|
||||
*/
|
||||
function randomizeOutputFromDataset(datasetSource, output) {
|
||||
const newOutput = [...output];
|
||||
let readSoFar = output.length;
|
||||
|
||||
while (true) {
|
||||
const iterator = datasetSource.next();
|
||||
if (iterator.done) break;
|
||||
readSoFar++;
|
||||
|
||||
const insertTo = Math.floor(Math.random() * readSoFar);
|
||||
if (insertTo < newOutput.length) {
|
||||
newOutput[insertTo] = iterator.value;
|
||||
}
|
||||
}
|
||||
|
||||
return newOutput;
|
||||
}
|
||||
|
||||
const main = () => {
|
||||
/**
|
||||
* Generates a random range of data, with values between 0 and 2^31 - 1
|
||||
* @param {number} length The number of data items to generate
|
||||
* @returns {Iterable<number>} Random iterable data
|
||||
*/
|
||||
function* generateRandomData(length) {
|
||||
const maxValue = Math.pow(2, 31) - 1;
|
||||
for (let i = 0; i < length; i++) {
|
||||
yield Math.floor(Math.random() * maxValue);
|
||||
}
|
||||
}
|
||||
|
||||
const source = generateRandomData(1000);
|
||||
const result = shuf(source, 10);
|
||||
console.log(result)
|
||||
}
|
||||
main()
|
Reference in New Issue
Block a user