feat: Test running overhaul, switch to Prettier & reformat everything (#1407)

* chore: Switch to Node 20 + Vitest

* chore: migrate to vitest mock functions

* chore: code style (switch to prettier)

* test: re-enable long-running test

Seems the switch to Node 20 and Vitest has vastly improved the code's and / or the test's runtime!

see #1193

* chore: code style

* chore: fix failing tests

* Updated Documentation in README.md

* Update contribution guidelines to state usage of Prettier

* fix: set prettier printWidth back to 80

* chore: apply updated code style automatically

* fix: set prettier line endings to lf again

* chore: apply updated code style automatically

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Lars Müller <34514239+appgurueu@users.noreply.github.com>
This commit is contained in:
Roland Hummel
2023-10-03 23:08:19 +02:00
committed by GitHub
parent 0ca18c2b2c
commit 86d333ee94
392 changed files with 5849 additions and 16622 deletions

View File

@@ -1,37 +1,45 @@
/*
*
* @file
* @title Composite Simpson's rule for definite integral evaluation
* @author: [ggkogkou](https://github.com/ggkogkou)
* @brief Calculate definite integrals using composite Simpson's numerical method
*
* @details The idea is to split the interval in an EVEN number N of intervals and use as interpolation points the xi
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
* first and last points of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
* I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)}
*
* That means that the first and last indexed i f(xi) are multiplied by 1,
* the odd indexed f(xi) by 4 and the even by 2.
*
* N must be even number and a<b. By increasing N, we also increase precision
*
* More info: [Wikipedia link](https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule)
*
*/
*
* @file
* @title Composite Simpson's rule for definite integral evaluation
* @author: [ggkogkou](https://github.com/ggkogkou)
* @brief Calculate definite integrals using composite Simpson's numerical method
*
* @details The idea is to split the interval in an EVEN number N of intervals and use as interpolation points the xi
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
* first and last points of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
* I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)}
*
* That means that the first and last indexed i f(xi) are multiplied by 1,
* the odd indexed f(xi) by 4 and the even by 2.
*
* N must be even number and a<b. By increasing N, we also increase precision
*
* More info: [Wikipedia link](https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule)
*
*/
function integralEvaluation (N, a, b, func) {
function integralEvaluation(N, a, b, func) {
// Check if N is an even integer
let isNEven = true
if (N % 2 !== 0) isNEven = false
if (!Number.isInteger(N) || Number.isNaN(a) || Number.isNaN(b)) { throw new TypeError('Expected integer N and finite a, b') }
if (!isNEven) { throw Error('N is not an even number') }
if (N <= 0) { throw Error('N has to be >= 2') }
if (!Number.isInteger(N) || Number.isNaN(a) || Number.isNaN(b)) {
throw new TypeError('Expected integer N and finite a, b')
}
if (!isNEven) {
throw Error('N is not an even number')
}
if (N <= 0) {
throw Error('N has to be >= 2')
}
// Check if a < b
if (a > b) { throw Error('a must be less or equal than b') }
if (a > b) {
throw Error('a must be less or equal than b')
}
if (a === b) return 0
// Calculate the step h
@@ -58,7 +66,11 @@ function integralEvaluation (N, a, b, func) {
result *= temp
if (Number.isNaN(result)) { throw Error("Result is NaN. The input interval doesn't belong to the functions domain") }
if (Number.isNaN(result)) {
throw Error(
"Result is NaN. The input interval doesn't belong to the functions domain"
)
}
return result
}