mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-06 09:28:26 +08:00
feat: Test running overhaul, switch to Prettier & reformat everything (#1407)
* chore: Switch to Node 20 + Vitest * chore: migrate to vitest mock functions * chore: code style (switch to prettier) * test: re-enable long-running test Seems the switch to Node 20 and Vitest has vastly improved the code's and / or the test's runtime! see #1193 * chore: code style * chore: fix failing tests * Updated Documentation in README.md * Update contribution guidelines to state usage of Prettier * fix: set prettier printWidth back to 80 * chore: apply updated code style automatically * fix: set prettier line endings to lf again * chore: apply updated code style automatically --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Lars Müller <34514239+appgurueu@users.noreply.github.com>
This commit is contained in:
@ -22,7 +22,7 @@
|
||||
* are a multiple of N, either g^(p/2) + 1 or g^(p/2) - 1 must share a
|
||||
* factor with N, which can then be found using Euclid's GCD algorithm.
|
||||
*/
|
||||
function ShorsAlgorithm (num) {
|
||||
function ShorsAlgorithm(num) {
|
||||
const N = BigInt(num)
|
||||
|
||||
while (true) {
|
||||
@ -61,7 +61,7 @@ function ShorsAlgorithm (num) {
|
||||
* @param {BigInt} B
|
||||
* @returns The value p.
|
||||
*/
|
||||
function findP (A, B) {
|
||||
function findP(A, B) {
|
||||
let p = 1n
|
||||
while (!isValidP(A, B, p)) p++
|
||||
return p
|
||||
@ -75,7 +75,7 @@ function findP (A, B) {
|
||||
* @param {BigInt} p
|
||||
* @returns Whether A, B, and p fulfill A^p = mB + 1.
|
||||
*/
|
||||
function isValidP (A, B, p) {
|
||||
function isValidP(A, B, p) {
|
||||
// A^p = mB + 1 => A^p - 1 = 0 (mod B)
|
||||
return (A ** p - 1n) % B === 0n
|
||||
}
|
||||
@ -87,9 +87,9 @@ function isValidP (A, B, p) {
|
||||
* @param {BigInt} B
|
||||
* @returns Greatest Common Divisor between A and B.
|
||||
*/
|
||||
function gcd (A, B) {
|
||||
function gcd(A, B) {
|
||||
while (B !== 0n) {
|
||||
[A, B] = [B, A % B]
|
||||
;[A, B] = [B, A % B]
|
||||
}
|
||||
|
||||
return Number(A)
|
||||
|
Reference in New Issue
Block a user