npx standard --fix

This commit is contained in:
cclauss
2020-05-03 09:05:12 +02:00
parent e62ad2f73e
commit 856dc2f63c
47 changed files with 2240 additions and 2371 deletions

View File

@ -1,37 +1,37 @@
function euclideanGCDRecursive(first, second) {
/*
function euclideanGCDRecursive (first, second) {
/*
Calculates GCD of two numbers using Euclidean Recursive Algorithm
:param first: First number
:param second: Second number
:return: GCD of the numbers
*/
if (second === 0) {
return first;
} else {
return euclideanGCDRecursive(second, (first % second));
}
if (second === 0) {
return first
} else {
return euclideanGCDRecursive(second, (first % second))
}
}
function euclideanGCDIterative(first, second) {
/*
function euclideanGCDIterative (first, second) {
/*
Calculates GCD of two numbers using Euclidean Iterative Algorithm
:param first: First number
:param second: Second number
:return: GCD of the numbers
*/
while (second !== 0) {
let temp = second;
second = first % second;
first = temp;
}
return first;
while (second !== 0) {
const temp = second
second = first % second
first = temp
}
return first
}
function main() {
let first = 20;
let second = 30;
console.log('Recursive GCD for %d and %d is %d', first, second, euclideanGCDRecursive(first, second));
console.log('Iterative GCD for %d and %d is %d', first, second, euclideanGCDIterative(first, second));
function main () {
const first = 20
const second = 30
console.log('Recursive GCD for %d and %d is %d', first, second, euclideanGCDRecursive(first, second))
console.log('Iterative GCD for %d and %d is %d', first, second, euclideanGCDIterative(first, second))
}
main();
main()

View File

@ -1,21 +1,21 @@
function KadaneAlgo (array) {
let cummulativeSum = 0
let maxSum = 0
for (var i = 0; i < array.length; i++) {
cummulativeSum = cummulativeSum + array[i]
if(cummulativeSum < 0 ) {
cummulativeSum = 0
}
if (maxSum < cummulativeSum) {
maxSum = cummulativeSum
}
let cummulativeSum = 0
let maxSum = 0
for (var i = 0; i < array.length; i++) {
cummulativeSum = cummulativeSum + array[i]
if (cummulativeSum < 0) {
cummulativeSum = 0
}
return maxSum
// This function returns largest sum contigous sum in a array
if (maxSum < cummulativeSum) {
maxSum = cummulativeSum
}
}
return maxSum
// This function returns largest sum contigous sum in a array
}
function main() {
var myArray = [1,2,3,4,-6]
var result = KadaneAlgo(myArray)
console.log(result)
function main () {
var myArray = [1, 2, 3, 4, -6]
var result = KadaneAlgo(myArray)
console.log(result)
}
main()
main()

View File

@ -8,18 +8,18 @@
// of the input value n, it is exponential in the size of n as
// a function of the number of input bits
function fib(n) {
var table = [];
table.push(1);
table.push(1);
for (var i = 2; i < n; ++i) {
table.push(table[i - 1] + table[i - 2]);
}
console.log("Fibonacci #%d = %d", n, table[n - 1]);
function fib (n) {
var table = []
table.push(1)
table.push(1)
for (var i = 2; i < n; ++i) {
table.push(table[i - 1] + table[i - 2])
}
console.log('Fibonacci #%d = %d', n, table[n - 1])
}
fib(1);
fib(2);
fib(200);
fib(5);
fib(10);
fib(1)
fib(2)
fib(200)
fib(5)
fib(10)

View File

@ -1,31 +1,31 @@
function sieveOfEratosthenes(n) {
/*
function sieveOfEratosthenes (n) {
/*
* Calculates prime numbers till a number n
* :param n: Number upto which to calculate primes
* :return: A boolean list contaning only primes
*/
let primes = new Array(n + 1);
primes.fill(true); // set all as true initially
primes[0] = primes[1] = false; // Handling case for 0 and 1
let sqrtn = Math.ceil(Math.sqrt(n));
for (let i = 2; i <= sqrtn; i++) {
if (primes[i]) {
for (let j = 2 * i; j <= n; j += i) {
primes[j] = false;
}
}
const primes = new Array(n + 1)
primes.fill(true) // set all as true initially
primes[0] = primes[1] = false // Handling case for 0 and 1
const sqrtn = Math.ceil(Math.sqrt(n))
for (let i = 2; i <= sqrtn; i++) {
if (primes[i]) {
for (let j = 2 * i; j <= n; j += i) {
primes[j] = false
}
}
return primes;
}
return primes
}
function main() {
let n = 69; // number till where we wish to find primes
let primes = sieveOfEratosthenes(n);
for (let i = 2; i <= n; i++) {
if (primes[i]) {
console.log(i);
}
function main () {
const n = 69 // number till where we wish to find primes
const primes = sieveOfEratosthenes(n)
for (let i = 2; i <= n; i++) {
if (primes[i]) {
console.log(i)
}
}
}
main();
main()

View File

@ -11,28 +11,26 @@
* @param {String} str - string to be decrypted
* @return {String} decrypted string
*/
function rot13(str) {
let response = [];
let strLength = str.length;
function rot13 (str) {
const response = []
const strLength = str.length
for (let i = 0; i < strLength; i++) {
const char = str.charCodeAt(i);
if (char < 65 || (char > 90 && char < 97) || char > 122) {
response.push(str.charAt(i));
} else if ((char > 77 && char <= 90) || (char > 109 && char <= 122)) {
response.push(String.fromCharCode(str.charCodeAt(i) - 13));
} else {
response.push(String.fromCharCode(str.charCodeAt(i) + 13));
}
for (let i = 0; i < strLength; i++) {
const char = str.charCodeAt(i)
if (char < 65 || (char > 90 && char < 97) || char > 122) {
response.push(str.charAt(i))
} else if ((char > 77 && char <= 90) || (char > 109 && char <= 122)) {
response.push(String.fromCharCode(str.charCodeAt(i) - 13))
} else {
response.push(String.fromCharCode(str.charCodeAt(i) + 13))
}
return response.join("");
}
return response.join('')
}
// Caesars Cipher Example
const encryptedString = "Uryyb Jbeyq";
const decryptedString = rot13(encryptedString);
const encryptedString = 'Uryyb Jbeyq'
const decryptedString = rot13(encryptedString)
console.log(decryptedString); // Hello World
console.log(decryptedString) // Hello World

View File

@ -1,157 +1,122 @@
/******************************************************
Find and retrieve the encryption key automatically
Find and retrieve the encryption key automatically
Note: This is a draft version, please help to modify, Thanks!
******************************************************/
function keyFinder(str){ // str is used to get the input of encrypted string
const wordbank =["I ","You ","We ","They ","He ","She ","It "," the ","The "," of "," is ","Is "," am ","Am "," are ","Are "," have ","Have "," has ","Has "," may ","May "," be ","Be "];
//let wordbankelementCounter = 0;
//let key = 0; // return zero means the key can not be found
let inStr = str.toString(); //convert the input to String
let outStr = ""; // store the output value
let outStrElement = ""; // temporary store the word inside the outStr, it is used for comparison
for (let k=0; k<26; k++){ //try the number of key shifted, the sum of character from a-z or A-Z is 26
outStr = caesarCipherEncodeAndDecodeEngine(inStr,k); // use the encrytpion engine to decrypt the input string
function keyFinder (str) { // str is used to get the input of encrypted string
const wordbank = ['I ', 'You ', 'We ', 'They ', 'He ', 'She ', 'It ', ' the ', 'The ', ' of ', ' is ', 'Is ', ' am ', 'Am ', ' are ', 'Are ', ' have ', 'Have ', ' has ', 'Has ', ' may ', 'May ', ' be ', 'Be ']
// let wordbankelementCounter = 0;
// let key = 0; // return zero means the key can not be found
const inStr = str.toString() // convert the input to String
let outStr = '' // store the output value
let outStrElement = '' // temporary store the word inside the outStr, it is used for comparison
for (let k = 0; k < 26; k++) { // try the number of key shifted, the sum of character from a-z or A-Z is 26
outStr = caesarCipherEncodeAndDecodeEngine(inStr, k) // use the encrytpion engine to decrypt the input string
//loop through the whole input string
for ( let s=0; s < outStr.length; s++){
// loop through the whole input string
for (let s = 0; s < outStr.length; s++) {
for (let i = 0; i < wordbank.length; i++) {
// initialize the outStrElement which is a temp output string for comparison,
// use a loop to find the next digit of wordbank element and compare with outStr's digit
for (let w = 0; w < wordbank[i].length; w++) {
outStrElement += outStr[s + w]
}
for ( let i=0; i < wordbank.length; i++){
// console.log( k + outStrElement + wordbank[i] );//debug
// initialize the outStrElement which is a temp output string for comparison,
// use a loop to find the next digit of wordbank element and compare with outStr's digit
for ( let w=0; w < wordbank[i].length; w++){
outStrElement += outStr[ s + w ];
}
// this part need to be optimize with the calculation of the number of occurance of word's probabilities
// linked list will be used in the next stage of development to calculate the number of occurace of the key
if (wordbank[i] == outStrElement) {
return k // return the key number if founded
}
//console.log( k + outStrElement + wordbank[i] );//debug
// this part need to be optimize with the calculation of the number of occurance of word's probabilities
// linked list will be used in the next stage of development to calculate the number of occurace of the key
if (wordbank[i] == outStrElement){
return k; // return the key number if founded
}
outStrElement = ""; //reset the temp word
} // end for ( let i=0; i < wordbank.length; i++)
}
}
return 0; // return 0 if found nothing
outStrElement = '' // reset the temp word
} // end for ( let i=0; i < wordbank.length; i++)
}
}
return 0 // return 0 if found nothing
}
/* this sub-function is used to assist the keyfinder to find the key */
function caesarCipherEncodeAndDecodeEngine(inStr, numShifted)
{
let shiftNum = numShifted;
let charCode = 0;
let outStr = "";
let shftedcharCode = 0;
let result = 0;
function caesarCipherEncodeAndDecodeEngine (inStr, numShifted) {
const shiftNum = numShifted
let charCode = 0
let outStr = ''
let shftedcharCode = 0
let result = 0
for (let i=0; i<inStr.length; i++){
for (let i = 0; i < inStr.length; i++) {
charCode = inStr[i].charCodeAt()
shftedcharCode = charCode + shiftNum
result = charCode
charCode = inStr[i].charCodeAt();
shftedcharCode = charCode + shiftNum;
result = charCode;
if ((charCode >= 48 && charCode <= 57)) {
if (shftedcharCode < 48) {
let diff = Math.abs(48 - 1 - shftedcharCode) % 10
if ( (charCode>=48 && charCode<=57))
{
if ( shftedcharCode < 48 ){
while (diff >= 10) {
diff = diff % 10
}
document.getElementById('diffID').innerHTML = diff
let diff = Math.abs(48-1-shftedcharCode)%10;
shftedcharCode = 57 - diff
while( diff >= 10){
diff = diff%10;
}
document.getElementById("diffID").innerHTML = diff;
result = shftedcharCode
} else if (shftedcharCode >= 48 && shftedcharCode <= 57) {
result = shftedcharCode
} else if (shftedcharCode > 57) {
let diff = Math.abs(57 + 1 - shftedcharCode) % 10
shftedcharCode = 57-diff;
result = shftedcharCode;
}
while (diff >= 10) {
diff = diff % 10
}
document.getElementById('diffID').innerHTML = diff
else if ( shftedcharCode>=48 && shftedcharCode<=57 ){
result = shftedcharCode;
}
shftedcharCode = 48 + diff
else if ( shftedcharCode > 57 ){
result = shftedcharCode
}
} else if ((charCode >= 65 && charCode <= 90)) {
if (shftedcharCode <= 64) {
let diff = Math.abs(65 - 1 - shftedcharCode) % 26
let diff = Math.abs(57+1-shftedcharCode)%10;
while ((diff % 26) >= 26) {
diff = diff % 26
}
shftedcharCode = 90 - diff
result = shftedcharCode
} else if (shftedcharCode >= 65 && shftedcharCode <= 90) {
result = shftedcharCode
} else if (shftedcharCode > 90) {
let diff = Math.abs(shftedcharCode - 1 - 90) % 26
while( diff >= 10){
diff = diff%10;
}
document.getElementById("diffID").innerHTML = diff;
while ((diff % 26) >= 26) {
diff = diff % 26
}
shftedcharCode = 65 + diff
result = shftedcharCode
}
} else if ((charCode >= 97 && charCode <= 122)) {
if (shftedcharCode <= 96) {
let diff = Math.abs(97 - 1 - shftedcharCode) % 26
shftedcharCode = 48+diff;
while ((diff % 26) >= 26) {
diff = diff % 26
}
shftedcharCode = 122 - diff
result = shftedcharCode
} else if (shftedcharCode >= 97 && shftedcharCode <= 122) {
result = shftedcharCode
} else if (shftedcharCode > 122) {
let diff = Math.abs(shftedcharCode - 1 - 122) % 26
result = shftedcharCode;
}
}
else if ( (charCode>=65 && charCode<=90) )
{
if (shftedcharCode <=64 ){
let diff = Math.abs(65-1-shftedcharCode)%26;
while( (diff%26) >= 26){
diff = diff%26;
}
shftedcharCode = 90-diff;
result = shftedcharCode;
}
else if ( shftedcharCode>=65 && shftedcharCode<=90 ){
result = shftedcharCode;
}
else if (shftedcharCode>90 ){
let diff = Math.abs(shftedcharCode-1-90)%26;
while( (diff%26) >= 26){
diff = diff%26;
}
shftedcharCode = 65+diff;
result = shftedcharCode;
}
}
else if ( (charCode>=97 && charCode<=122))
{
if ( shftedcharCode<=96 ){
let diff = Math.abs(97-1-shftedcharCode)%26;
while( (diff%26) >= 26){
diff = diff%26;
}
shftedcharCode = 122-diff;
result = shftedcharCode;
}
else if ( shftedcharCode>=97 && shftedcharCode<=122 ){
result = shftedcharCode;
}
else if (shftedcharCode>122 ){
let diff = Math.abs(shftedcharCode-1-122)%26;
while( (diff%26) >= 26){
diff = diff%26;
}
shftedcharCode = 97+diff;
result = shftedcharCode;
}
}
outStr = outStr + String.fromCharCode(parseInt(result));
}
return outStr;
while ((diff % 26) >= 26) {
diff = diff % 26
}
shftedcharCode = 97 + diff
result = shftedcharCode
}
}
outStr = outStr + String.fromCharCode(parseInt(result))
}
return outStr
}

View File

@ -3,8 +3,8 @@
* @param {String} character - character to check
* @return {object} An array with the character or null if isn't a letter
*/
function isLetter(str) {
return str.length === 1 && str.match(/[a-zA-Z]/i);
function isLetter (str) {
return str.length === 1 && str.match(/[a-zA-Z]/i)
}
/**
@ -12,12 +12,12 @@ function isLetter(str) {
* @param {String} character - character to check
* @return {Boolean} result of the checking
*/
function isUpperCase(character){
function isUpperCase (character) {
if (character == character.toUpperCase()) {
return true;
return true
}
if (character == character.toLowerCase()){
return false;
if (character == character.toLowerCase()) {
return false
}
}
@ -27,25 +27,23 @@ function isUpperCase(character){
* @param {String} key - key for encrypt
* @return {String} result - encrypted string
*/
function encrypt(message, key)
{
let result = "";
function encrypt (message, key) {
let result = ''
for (let i = 0, j = 0; i < message.length; i++) {
let c = message.charAt(i);
if (isLetter(c)){
if(isUpperCase(c)) {
result += String.fromCharCode((c.charCodeAt(0) + key.toUpperCase().charCodeAt(j) - 2 * 65) % 26 + 65); // A: 65
const c = message.charAt(i)
if (isLetter(c)) {
if (isUpperCase(c)) {
result += String.fromCharCode((c.charCodeAt(0) + key.toUpperCase().charCodeAt(j) - 2 * 65) % 26 + 65) // A: 65
} else {
result += String.fromCharCode((c.charCodeAt(0) + key.toLowerCase().charCodeAt(j) - 2 * 97) % 26 + 97); // a: 97
result += String.fromCharCode((c.charCodeAt(0) + key.toLowerCase().charCodeAt(j) - 2 * 97) % 26 + 97) // a: 97
}
} else {
result+=c;
result += c
}
j = ++j % key.length;
j = ++j % key.length
}
return result;
return result
}
/**
@ -54,28 +52,27 @@ function encrypt(message, key)
* @param {String} key - key for decrypt
* @return {String} result - decrypted string
*/
function decrypt(message, key)
{
let result ="";
function decrypt (message, key) {
let result = ''
for(let i = 0, j = 0; i < message.length; i++){
let c = message.charAt(i);
if (isLetter(c)){
if(isUpperCase(c)) {
result += String.fromCharCode(90-(25-(c.charCodeAt(0)-key.toUpperCase().charCodeAt(j)))%26);
for (let i = 0, j = 0; i < message.length; i++) {
const c = message.charAt(i)
if (isLetter(c)) {
if (isUpperCase(c)) {
result += String.fromCharCode(90 - (25 - (c.charCodeAt(0) - key.toUpperCase().charCodeAt(j))) % 26)
} else {
result += String.fromCharCode(122-(25-(c.charCodeAt(0)-key.toLowerCase().charCodeAt(j)))%26);
result += String.fromCharCode(122 - (25 - (c.charCodeAt(0) - key.toLowerCase().charCodeAt(j))) % 26)
}
} else {
result+=c;
result += c
}
j = ++j % key.length;
j = ++j % key.length
}
return result;
return result
}
let messageEncrypt = encrypt('Hello World!', 'code');
console.log(messageEncrypt); // "Jhpnr Yrvng!"
const messageEncrypt = encrypt('Hello World!', 'code')
console.log(messageEncrypt) // "Jhpnr Yrvng!"
let messageDecrypt = decrypt('Jsopq Zstzg!', 'code');
console.log(messageDecrypt); // "Hello World!"
const messageDecrypt = decrypt('Jsopq Zstzg!', 'code')
console.log(messageDecrypt) // "Hello World!"

View File

@ -1,12 +1,12 @@
function decimalToBinary(num) {
var bin = [];
function decimalToBinary (num) {
var bin = []
while (num > 0) {
bin.unshift(num % 2);
num >>= 1; // basically /= 2 without remainder if any
bin.unshift(num % 2)
num >>= 1 // basically /= 2 without remainder if any
}
console.log("The decimal in binary is " + bin.join(""));
console.log('The decimal in binary is ' + bin.join(''))
}
decimalToBinary(2);
decimalToBinary(7);
decimalToBinary(35);
decimalToBinary(2)
decimalToBinary(7)
decimalToBinary(35)

View File

@ -1,24 +1,24 @@
function intToHex(num){
switch(num){
case 10: return "A";
case 11: return "B";
case 12: return "C";
case 13: return "D";
case 14: return "E";
case 15: return "F";
}
return num;
function intToHex (num) {
switch (num) {
case 10: return 'A'
case 11: return 'B'
case 12: return 'C'
case 13: return 'D'
case 14: return 'E'
case 15: return 'F'
}
return num
}
function decimalToHex(num){
let hex_out = [];
while(num > 15) {
hex_out.push(intToHex(num%16));
num = Math.floor(num / 16);
}
return intToHex(num) + hex_out.join("");
function decimalToHex (num) {
const hex_out = []
while (num > 15) {
hex_out.push(intToHex(num % 16))
num = Math.floor(num / 16)
}
return intToHex(num) + hex_out.join('')
}
// test cases
console.log(decimalToHex(999098) === "F3EBA");
console.log(decimalToHex(123) === "7B");
console.log(decimalToHex(999098) === 'F3EBA')
console.log(decimalToHex(123) === '7B')

View File

@ -1,15 +1,15 @@
function decimalToOctal(num) {
var oct = 0,c=0;
function decimalToOctal (num) {
var oct = 0; var c = 0
while (num > 0) {
var r=num%8;
oct=oct+(r*Math.pow(10,c++));
num =Math.floor(num/ 8); // basically /= 8 without remainder if any
var r = num % 8
oct = oct + (r * Math.pow(10, c++))
num = Math.floor(num / 8) // basically /= 8 without remainder if any
}
console.log("The decimal in octal is " + oct);
console.log('The decimal in octal is ' + oct)
}
decimalToOctal(2);
decimalToOctal(8);
decimalToOctal(65);
decimalToOctal(216);
decimalToOctal(512);
decimalToOctal(2)
decimalToOctal(8)
decimalToOctal(65)
decimalToOctal(216)
decimalToOctal(512)

View File

@ -1,50 +1,44 @@
class Graph {
constructor () {
this.adjacencyMap = {}
}
constructor() {
this.adjacencyMap = {}
addVertex (v) {
this.adjacencyMap[v] = []
}
containsVertex (vertex) {
return typeof (this.adjacencyMap[vertex]) !== 'undefined'
}
addEdge (v, w) {
let result = false
if (this.containsVertex(v) && this.containsVertex(w)) {
this.adjacencyMap[v].push(w)
this.adjacencyMap[w].push(v)
result = true
}
return result
}
addVertex(v) {
this.adjacencyMap[v] = [];
printGraph () {
const keys = Object.keys(this.adjacencyMap)
for (const i of keys) {
const values = this.adjacencyMap[i]
let vertex = ''
for (const j of values) { vertex += j + ' ' }
console.log(i + ' -> ' + vertex)
}
containsVertex(vertex) {
return typeof (this.adjacencyMap[vertex]) !== "undefined"
}
addEdge(v, w) {
let result = false
if (this.containsVertex(v) && this.containsVertex(w)) {
this.adjacencyMap[v].push(w);
this.adjacencyMap[w].push(v);
result = true
}
return result
}
printGraph() {
let keys = Object.keys(this.adjacencyMap);
for (let i of keys) {
let values = this.adjacencyMap[i];
let vertex = "";
for (let j of values)
vertex += j + " ";
console.log(i + " -> " + vertex);
}
}
}
}
const example = () => {
let g = new Graph()
g.addVertex(1)
g.addVertex(2)
g.addVertex(3)
g.addEdge(1, 2)
g.addEdge(1, 3)
g.printGraph()
}
const g = new Graph()
g.addVertex(1)
g.addVertex(2)
g.addVertex(3)
g.addEdge(1, 2)
g.addEdge(1, 3)
g.printGraph()
}

View File

@ -1,8 +1,8 @@
/* Minimum Priority Queue
* It is a part of heap data structure
* A heap is a specific tree based data structure
* in which all the nodes of tree are in a specific order.
* A heap is a specific tree based data structure
* in which all the nodes of tree are in a specific order.
* that is the children are arranged in some
* respect of their parents, can either be greater
* or less than the parent. This makes it a min priority queue
@ -12,117 +12,115 @@
// Functions: insert, delete, peek, isEmpty, print, heapSort, sink
class MinPriorityQueue {
// calss the constructor and initializes the capacity
constructor(c) {
this.heap = [];
this.capacity = c;
this.size = 0;
// calss the constructor and initializes the capacity
constructor (c) {
this.heap = []
this.capacity = c
this.size = 0
}
// inserts the key at the end and rearranges it
// so that the binary heap is in appropriate order
insert(key) {
if (this.isFull()) return;
this.heap[this.size + 1] = key;
let k = this.size + 1;
// inserts the key at the end and rearranges it
// so that the binary heap is in appropriate order
insert (key) {
if (this.isFull()) return
this.heap[this.size + 1] = key
let k = this.size + 1
while (k > 1) {
if (this.heap[k] < this.heap[Math.floor(k / 2)]) {
let temp = this.heap[k];
this.heap[k] = this.heap[Math.floor(k / 2)];
this.heap[Math.floor(k / 2)] = temp;
const temp = this.heap[k]
this.heap[k] = this.heap[Math.floor(k / 2)]
this.heap[Math.floor(k / 2)] = temp
}
k = Math.floor(k / 2);
k = Math.floor(k / 2)
}
this.size++;
this.size++
}
// returns the highest priority value
peek() {
return this.heap[1];
// returns the highest priority value
peek () {
return this.heap[1]
}
// returns boolean value whether the heap is empty or not
isEmpty() {
if (0 == this.size) return true;
return false;
// returns boolean value whether the heap is empty or not
isEmpty () {
if (this.size == 0) return true
return false
}
// returns boolean value whether the heap is full or not
isFull() {
if (this.size == this.capacity) return true;
return false;
// returns boolean value whether the heap is full or not
isFull () {
if (this.size == this.capacity) return true
return false
}
// prints the heap
print() {
console.log(this.heap.slice(1));
// prints the heap
print () {
console.log(this.heap.slice(1))
}
// heap sorting can be done by performing
// delete function to the number of times of the size of the heap
// it returns reverse sort because it is a min priority queue
heapSort() {
// heap sorting can be done by performing
// delete function to the number of times of the size of the heap
// it returns reverse sort because it is a min priority queue
heapSort () {
for (let i = 1; i < this.capacity; i++) {
this.delete();
}
this.delete()
}
}
// this function reorders the heap after every delete function
sink() {
let k = 1;
// this function reorders the heap after every delete function
sink () {
let k = 1
while (2 * k <= this.size || 2 * k + 1 <= this.size) {
let minIndex;
let minIndex
if (this.heap[2 * k] >= this.heap[k]) {
if (2 * k + 1 <= this.size && this.heap[2*k+1] >= this.heap[k]) {
break;
}
else if(2*k+1 > this.size){
break;
}
if (2 * k + 1 <= this.size && this.heap[2 * k + 1] >= this.heap[k]) {
break
} else if (2 * k + 1 > this.size) {
break
}
}
if (2 * k + 1 > this.size) {
minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k;
minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k
} else {
if (
this.heap[k] > this.heap[2 * k] ||
this.heap[k] > this.heap[2 * k + 1]
) {
minIndex =
this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1;
this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1
} else {
minIndex = k;
minIndex = k
}
}
let temp = this.heap[k];
this.heap[k] = this.heap[minIndex];
this.heap[minIndex] = temp;
k = minIndex;
const temp = this.heap[k]
this.heap[k] = this.heap[minIndex]
this.heap[minIndex] = temp
k = minIndex
}
}
// deletes the highest priority value from the heap
delete() {
let min = this.heap[1];
this.heap[1] = this.heap[this.size];
this.heap[this.size] = min;
this.size--;
this.sink();
return min;
// deletes the highest priority value from the heap
delete () {
const min = this.heap[1]
this.heap[1] = this.heap[this.size]
this.heap[this.size] = min
this.size--
this.sink()
return min
}
}
// testing
q = new MinPriorityQueue(8);
q = new MinPriorityQueue(8)
q.insert(5);
q.insert(2);
q.insert(4);
q.insert(1);
q.insert(7);
q.insert(6);
q.insert(3);
q.insert(8);
q.print(); // [ 1, 2, 3, 5, 7, 6, 4, 8 ]
q.heapSort();
q.print(); // [ 8, 7, 6, 5, 4, 3, 2, 1 ]
q.insert(5)
q.insert(2)
q.insert(4)
q.insert(1)
q.insert(7)
q.insert(6)
q.insert(3)
q.insert(8)
q.print() // [ 1, 2, 3, 5, 7, 6, 4, 8 ]
q.heapSort()
q.print() // [ 8, 7, 6, 5, 4, 3, 2, 1 ]

View File

@ -1,197 +1,195 @@
//Hamza chabchoub contribution for a university project
function doubleLinkedList() {
let Node = function(element) {
this.element = element;
this.next = null;
this.prev = null;
// Hamza chabchoub contribution for a university project
function doubleLinkedList () {
const Node = function (element) {
this.element = element
this.next = null
this.prev = null
}
let length = 0
let head = null
let tail = null
// Add new element
this.append = function (element) {
const node = new Node(element)
if (!head) {
head = node
tail = node
} else {
node.prev = tail
tail.next = node
tail = node
}
let length = 0;
let head = null;
let tail = null;
//Add new element
this.append = function(element) {
let node = new Node(element);
if(!head){
head = node;
tail = node;
}else{
node.prev = tail;
tail.next = node;
tail = node;
}
length++;
}
//Add element
this.insert = function(position, element) {
//Check of out-of-bound values
if(position >= 0 && position <= length){
let node = new Node(element),
current = head,
previous,
index = 0;
if(position === 0){
if(!head){
head = node;
tail = node;
}else{
node.next = current;
current.prev = node;
head = node;
}
}else if(position === length){
current = tail;
current.next = node;
node.prev = current;
tail = node;
}else{
while(index++ < position){
previous = current;
current = current.next;
}
node.next = current;
previous.next = node;
//New
current.prev = node;
node.prev = previous;
length++
}
// Add element
this.insert = function (position, element) {
// Check of out-of-bound values
if (position >= 0 && position <= length) {
const node = new Node(element)
let current = head
let previous
let index = 0
if (position === 0) {
if (!head) {
head = node
tail = node
} else {
node.next = current
current.prev = node
head = node
}
length++;
return true;
}else{
return false;
}
}
//Remove element at any position
this.removeAt = function(position){
//look for out-of-bounds value
if(position > -1 && position < length){
let current = head, previous, index = 0;
//Removing first item
if(position === 0){
head = current.next;
//if there is only one item, update tail //NEW
if(length === 1){
tail = null;
}else{
head.prev = null;
}
}else if(position === length - 1){
current = tail;
tail = current.prev;
tail.next = null;
}else{
while(index++ < position){
previous = current;
current = current.next;
}
//link previous with current's next - skip it
previous.next = current.next;
current.next.prev = previous;
} else if (position === length) {
current = tail
current.next = node
node.prev = current
tail = node
} else {
while (index++ < position) {
previous = current
current = current.next
}
length--;
return current.element;
}else{
return null;
node.next = current
previous.next = node
// New
current.prev = node
node.prev = previous
}
length++
return true
} else {
return false
}
//Get the indexOf item
this.indexOf = function(elm){
let current = head,
index = -1;
//If element found then return its position
while(current){
if(elm === current.element){
return ++index;
}
// Remove element at any position
this.removeAt = function (position) {
// look for out-of-bounds value
if (position > -1 && position < length) {
let current = head; let previous; let index = 0
// Removing first item
if (position === 0) {
head = current.next
// if there is only one item, update tail //NEW
if (length === 1) {
tail = null
} else {
head.prev = null
}
index++;
current = current.next;
}
//Else return -1
return -1;
};
//Find the item in the list
this.isPresent = (elm) => {
return this.indexOf(elm) !== -1;
};
//Delete an item from the list
this.delete = (elm) => {
return this.removeAt(this.indexOf(elm));
};
//Delete first item from the list
this.deleteHead = function(){
this.removeAt(0);
}
//Delete last item from the list
this.deleteTail = function(){
this.removeAt(length-1);
}
//Print item of the string
this.toString = function(){
let current = head,
string = '';
while(current){
string += current.element + (current.next ? '\n' : '');
current = current.next;
} else if (position === length - 1) {
current = tail
tail = current.prev
tail.next = null
} else {
while (index++ < position) {
previous = current
current = current.next
}
// link previous with current's next - skip it
previous.next = current.next
current.next.prev = previous
}
return string;
};
//Convert list to array
this.toArray = function(){
let arr = [],
current = head;
while(current){
arr.push(current.element);
current = current.next;
length--
return current.element
} else {
return null
}
}
// Get the indexOf item
this.indexOf = function (elm) {
let current = head
let index = -1
// If element found then return its position
while (current) {
if (elm === current.element) {
return ++index
}
return arr;
};
//Check if list is empty
this.isEmpty = function(){
return length === 0;
};
//Get the size of the list
this.size = function(){
return length;
index++
current = current.next
}
//Get the head
this.getHead = function() {
return head;
// Else return -1
return -1
}
// Find the item in the list
this.isPresent = (elm) => {
return this.indexOf(elm) !== -1
}
// Delete an item from the list
this.delete = (elm) => {
return this.removeAt(this.indexOf(elm))
}
// Delete first item from the list
this.deleteHead = function () {
this.removeAt(0)
}
// Delete last item from the list
this.deleteTail = function () {
this.removeAt(length - 1)
}
// Print item of the string
this.toString = function () {
let current = head
let string = ''
while (current) {
string += current.element + (current.next ? '\n' : '')
current = current.next
}
//Get the tail
this.getTail = function() {
return tail;
return string
}
// Convert list to array
this.toArray = function () {
const arr = []
let current = head
while (current) {
arr.push(current.element)
current = current.next
}
}
return arr
}
// Check if list is empty
this.isEmpty = function () {
return length === 0
}
// Get the size of the list
this.size = function () {
return length
}
// Get the head
this.getHead = function () {
return head
}
// Get the tail
this.getTail = function () {
return tail
}
}

View File

@ -6,212 +6,204 @@
* a singly linked list.
*/
//Functions - add, remove, indexOf, elementAt, addAt, removeAt, view
// Functions - add, remove, indexOf, elementAt, addAt, removeAt, view
// class LinkedList and constructor
//Creates a LinkedList
// Creates a LinkedList
var LinkedList = (function () {
function LinkedList() {
//Length of linklist and head is null at start
this.length = 0;
this.head = null;
function LinkedList () {
// Length of linklist and head is null at start
this.length = 0
this.head = null
}
// class node (constructor)
//Creating Node with element's value
// Creating Node with element's value
var Node = (function () {
function Node(element) {
this.element = element;
this.next = null;
function Node (element) {
this.element = element
this.next = null
}
return Node;
}());
return Node
}())
//Returns length
// Returns length
LinkedList.prototype.size = function () {
return this.length;
};
return this.length
}
//Returns the head
// Returns the head
LinkedList.prototype.head = function () {
return this.head;
};
return this.head
}
//Creates a node and adds it to linklist
// Creates a node and adds it to linklist
LinkedList.prototype.add = function (element) {
var node = new Node(element);
//Check if its the first element
var node = new Node(element)
// Check if its the first element
if (this.head === null) {
this.head = node;
}
else {
var currentNode = this.head;
this.head = node
} else {
var currentNode = this.head
//Loop till there is node present in the list
// Loop till there is node present in the list
while (currentNode.next) {
currentNode = currentNode.next;
currentNode = currentNode.next
}
//Adding node to the end of the list
currentNode.next = node;
// Adding node to the end of the list
currentNode.next = node
}
//Increment the length
this.length++;
};
// Increment the length
this.length++
}
//Removes the node with the value as param
// Removes the node with the value as param
LinkedList.prototype.remove = function (element) {
var currentNode = this.head;
var previousNode;
var currentNode = this.head
var previousNode
//Check if the head node is the element to remove
// Check if the head node is the element to remove
if (currentNode.element === element) {
this.head = currentNode.next;
}
else {
//Check which node is the node to remove
this.head = currentNode.next
} else {
// Check which node is the node to remove
while (currentNode.element !== element) {
previousNode = currentNode;
currentNode = currentNode.next;
previousNode = currentNode
currentNode = currentNode.next
}
//Removing the currentNode
previousNode.next = currentNode.next;
// Removing the currentNode
previousNode.next = currentNode.next
}
//Decrementing the length
this.length--;
};
// Decrementing the length
this.length--
}
//Return if the list is empty
// Return if the list is empty
LinkedList.prototype.isEmpty = function () {
return this.length === 0;
};
return this.length === 0
}
//Returns the index of the element passed as param otherwise -1
// Returns the index of the element passed as param otherwise -1
LinkedList.prototype.indexOf = function (element) {
var currentNode = this.head;
var index = -1;
var currentNode = this.head
var index = -1
while (currentNode) {
index++;
index++
//Checking if the node is the element we are searching for
// Checking if the node is the element we are searching for
if (currentNode.element === element) {
return index + 1;
return index + 1
}
currentNode = currentNode.next;
currentNode = currentNode.next
}
return -1;
};
return -1
}
//Returns the element at an index
// Returns the element at an index
LinkedList.prototype.elementAt = function (index) {
var currentNode = this.head;
var count = 0;
var currentNode = this.head
var count = 0
while (count < index) {
count++;
currentNode = currentNode.next;
count++
currentNode = currentNode.next
}
return currentNode.element;
};
return currentNode.element
}
//Adds the element at specified index
// Adds the element at specified index
LinkedList.prototype.addAt = function (index, element) {
index--;
var node = new Node(element);
index--
var node = new Node(element)
var currentNode = this.head;
var previousNode;
var currentIndex = 0;
var currentNode = this.head
var previousNode
var currentIndex = 0
//Check if index is out of bounds of list
// Check if index is out of bounds of list
if (index > this.length) {
return false;
return false
}
//Check if index is the start of list
// Check if index is the start of list
if (index === 0) {
node.next = currentNode;
this.head = node;
}
else {
node.next = currentNode
this.head = node
} else {
while (currentIndex < index) {
currentIndex++;
previousNode = currentNode;
currentNode = currentNode.next;
currentIndex++
previousNode = currentNode
currentNode = currentNode.next
}
//Adding the node at specified index
node.next = currentNode;
previousNode.next = node;
// Adding the node at specified index
node.next = currentNode
previousNode.next = node
}
//Incrementing the length
this.length++;
return true;
};
// Incrementing the length
this.length++
return true
}
//Removes the node at specified index
// Removes the node at specified index
LinkedList.prototype.removeAt = function (index) {
index--;
var currentNode = this.head;
var previousNode;
var currentIndex = 0;
index--
var currentNode = this.head
var previousNode
var currentIndex = 0
//Check if index is present in list
// Check if index is present in list
if (index < 0 || index >= this.length) {
return null;
return null
}
//Check if element is the first element
// Check if element is the first element
if (index === 0) {
this.head = currentNode.next;
}
else {
this.head = currentNode.next
} else {
while (currentIndex < index) {
currentIndex++;
previousNode = currentNode;
currentNode = currentNode.next;
currentIndex++
previousNode = currentNode
currentNode = currentNode.next
}
previousNode.next = currentNode.next;
previousNode.next = currentNode.next
}
//Decrementing the length
this.length--;
return currentNode.element;
};
// Decrementing the length
this.length--
return currentNode.element
}
//Function to view the LinkedList
// Function to view the LinkedList
LinkedList.prototype.view = function () {
var currentNode = this.head;
var count = 0;
var currentNode = this.head
var count = 0
while (count < this.length) {
count++;
console.log(currentNode.element);
currentNode = currentNode.next;
count++
console.log(currentNode.element)
currentNode = currentNode.next
}
};
}
// returns the constructor
return LinkedList;
return LinkedList
}())
}());
//Implementation of LinkedList
var linklist = new LinkedList();
linklist.add(2);
linklist.add(5);
linklist.add(8);
linklist.add(12);
linklist.add(17);
console.log(linklist.size());
console.log(linklist.removeAt(4));
linklist.addAt(4, 15);
console.log(linklist.indexOf(8));
console.log(linklist.size());
linklist.view();
// Implementation of LinkedList
var linklist = new LinkedList()
linklist.add(2)
linklist.add(5)
linklist.add(8)
linklist.add(12)
linklist.add(17)
console.log(linklist.size())
console.log(linklist.removeAt(4))
linklist.addAt(4, 15)
console.log(linklist.indexOf(8))
console.log(linklist.size())
linklist.view()

View File

@ -5,80 +5,76 @@
* implementation uses an array to store the queue.
*/
//Functions: enqueue, dequeue, peek, view, length
// Functions: enqueue, dequeue, peek, view, length
var Queue = (function () {
// constructor
function Queue() {
//This is the array representation of the queue
this.queue = [];
function Queue () {
// This is the array representation of the queue
this.queue = []
}
// methods
//Add a value to the end of the queue
// methods
// Add a value to the end of the queue
Queue.prototype.enqueue = function (item) {
this.queue[this.queue.length] = item;
};
this.queue[this.queue.length] = item
}
//Removes the value at the front of the queue
// Removes the value at the front of the queue
Queue.prototype.dequeue = function () {
if (this.queue.length === 0) {
throw "Queue is Empty";
throw 'Queue is Empty'
}
var result = this.queue[0];
this.queue.splice(0, 1); //remove the item at position 0 from the array
var result = this.queue[0]
this.queue.splice(0, 1) // remove the item at position 0 from the array
return result;
};
return result
}
//Return the length of the queue
// Return the length of the queue
Queue.prototype.length = function () {
return this.queue.length;
};
return this.queue.length
}
//Return the item at the front of the queue
// Return the item at the front of the queue
Queue.prototype.peek = function () {
return this.queue[0];
};
return this.queue[0]
}
//List all the items in the queue
// List all the items in the queue
Queue.prototype.view = function () {
console.log(this.queue);
};
console.log(this.queue)
}
return Queue;
return Queue
}())
}());
// Implementation
var myQueue = new Queue()
//Implementation
var myQueue = new Queue();
myQueue.enqueue(1)
myQueue.enqueue(5)
myQueue.enqueue(76)
myQueue.enqueue(69)
myQueue.enqueue(32)
myQueue.enqueue(54)
myQueue.enqueue(1);
myQueue.enqueue(5);
myQueue.enqueue(76);
myQueue.enqueue(69);
myQueue.enqueue(32);
myQueue.enqueue(54);
myQueue.view()
myQueue.view();
console.log("Length: " + myQueue.length());
console.log("Front item: " + myQueue.peek());
console.log("Removed " + myQueue.dequeue() + " from front.");
console.log("New front item: " + myQueue.peek());
console.log("Removed " + myQueue.dequeue() + " from front.");
console.log("New front item: " + myQueue.peek());
myQueue.enqueue(55);
console.log("Inserted 55");
console.log("New front item: " + myQueue.peek());
console.log('Length: ' + myQueue.length())
console.log('Front item: ' + myQueue.peek())
console.log('Removed ' + myQueue.dequeue() + ' from front.')
console.log('New front item: ' + myQueue.peek())
console.log('Removed ' + myQueue.dequeue() + ' from front.')
console.log('New front item: ' + myQueue.peek())
myQueue.enqueue(55)
console.log('Inserted 55')
console.log('New front item: ' + myQueue.peek())
for (var i = 0; i < 5; i++) {
myQueue.dequeue();
myQueue.view();
myQueue.dequeue()
myQueue.view()
}
//console.log(myQueue.dequeue()); // throws exception!
// console.log(myQueue.dequeue()); // throws exception!

View File

@ -7,69 +7,66 @@
// Functions: push, pop, peek, view, length
//Creates a stack constructor
// Creates a stack constructor
var Stack = (function () {
function Stack() {
//The top of the Stack
this.top = 0;
//The array representation of the stack
this.stack = new Array();
function Stack () {
// The top of the Stack
this.top = 0
// The array representation of the stack
this.stack = new Array()
}
//Adds a value onto the end of the stack
// Adds a value onto the end of the stack
Stack.prototype.push = function (value) {
this.stack[this.top] = value;
this.top++;
};
this.stack[this.top] = value
this.top++
}
//Removes and returns the value at the end of the stack
// Removes and returns the value at the end of the stack
Stack.prototype.pop = function () {
if (this.top === 0) {
return "Stack is Empty";
return 'Stack is Empty'
}
this.top--;
var result = this.stack[this.top];
delete this.stack[this.top];
return result;
};
//Returns the size of the stack
Stack.prototype.size = function () {
return this.top;
};
//Returns the value at the end of the stack
Stack.prototype.peek = function () {
return this.stack[this.top - 1];
this.top--
var result = this.stack[this.top]
delete this.stack[this.top]
return result
}
//To see all the elements in the stack
// Returns the size of the stack
Stack.prototype.size = function () {
return this.top
}
// Returns the value at the end of the stack
Stack.prototype.peek = function () {
return this.stack[this.top - 1]
}
// To see all the elements in the stack
Stack.prototype.view = function () {
for (var i = 0; i < this.top; i++)
console.log(this.stack[i]);
};
for (var i = 0; i < this.top; i++) { console.log(this.stack[i]) }
}
return Stack;
return Stack
}())
}());
// Implementation
var myStack = new Stack()
//Implementation
var myStack = new Stack();
myStack.push(1);
myStack.push(5);
myStack.push(76);
myStack.push(69);
myStack.push(32);
myStack.push(54);
console.log(myStack.size());
console.log(myStack.peek());
console.log(myStack.pop());
console.log(myStack.peek());
console.log(myStack.pop());
console.log(myStack.peek());
myStack.push(55);
console.log(myStack.peek());
myStack.view();
myStack.push(1)
myStack.push(5)
myStack.push(76)
myStack.push(69)
myStack.push(32)
myStack.push(54)
console.log(myStack.size())
console.log(myStack.peek())
console.log(myStack.pop())
console.log(myStack.peek())
console.log(myStack.pop())
console.log(myStack.peek())
myStack.push(55)
console.log(myStack.peek())
myStack.view()

View File

@ -1,4 +1,4 @@
/*Binary Search Tree!!
/* Binary Search Tree!!
*
* Nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
@ -13,104 +13,102 @@
// class Node
var Node = (function () {
// Node in the tree
function Node(val) {
this.value = val;
this.left = null;
this.right = null;
function Node (val) {
this.value = val
this.left = null
this.right = null
}
// Search the tree for a value
Node.prototype.search = function (val) {
if (this.value == val) {
return this;
return this
} else if (val < this.value && this.left != null) {
return this.left.search(val);
return this.left.search(val)
} else if (val > this.value && this.right != null) {
return this.right.search(val);
return this.right.search(val)
}
return null;
};
return null
}
// Visit a node
Node.prototype.visit = function () {
// Recursively go left
if (this.left != null) {
this.left.visit();
this.left.visit()
}
// Print out value
console.log(this.value);
console.log(this.value)
// Recursively go right
if (this.right != null) {
this.right.visit();
this.right.visit()
}
};
}
// Add a node
Node.prototype.addNode = function (n) {
if (n.value < this.value) {
if (this.left == null) {
this.left = n;
this.left = n
} else {
this.left.addNode(n)
}
} else if (n.value > this.value) {
if (this.right == null) {
this.right = n;
this.right = n
} else {
this.right.addNode(n);
this.right.addNode(n)
}
}
};
}
// returns the constructor
return Node;
}());
return Node
}())
// class Tree
var Tree = (function () {
function Tree() {
function Tree () {
// Just store the root
this.root = null;
this.root = null
};
// Inorder traversal
Tree.prototype.traverse = function () {
this.root.visit();
};
this.root.visit()
}
// Start by searching the root
Tree.prototype.search = function (val) {
let found = this.root.search(val);
const found = this.root.search(val)
if (found === null) {
console.log(val + " not found");
console.log(val + ' not found')
} else {
console.log('Found:' + found.value)
}
else {
console.log("Found:" + found.value);
}
};
}
// Add a new value to the tree
Tree.prototype.addValue = function (val) {
let n = new Node(val);
const n = new Node(val)
if (this.root == null) {
this.root = n;
this.root = n
} else {
this.root.addNode(n);
this.root.addNode(n)
}
};
}
// returns the constructor
return Tree;
}());
return Tree
}())
//Implementation of BST
var bst = new Tree();
bst.addValue(6);
bst.addValue(3);
bst.addValue(9);
bst.addValue(2);
bst.addValue(8);
bst.addValue(4);
bst.traverse();
bst.search(8);
// Implementation of BST
var bst = new Tree()
bst.addValue(6)
bst.addValue(3)
bst.addValue(9)
bst.addValue(2)
bst.addValue(8)
bst.addValue(4)
bst.traverse()
bst.search(8)

View File

@ -1,12 +1,12 @@
//================================================================
//= ===============================================================
// SHA1.js
//
// Module that replicates the SHA-1 Cryptographic Hash
// Module that replicates the SHA-1 Cryptographic Hash
// function in Javascript.
//================================================================
//= ===============================================================
//main variables
const CHAR_SIZE = 8;
// main variables
const CHAR_SIZE = 8
/**
* Adds padding to binary/hex string represention
@ -18,12 +18,12 @@ const CHAR_SIZE = 8;
* @example
* pad("10011", 8); // "00010011"
*/
function pad(str, bits) {
let res = str;
while (res.length % bits !== 0) {
res = "0" + res;
}
return res;
function pad (str, bits) {
let res = str
while (res.length % bits !== 0) {
res = '0' + res
}
return res
}
/**
@ -36,12 +36,12 @@ function pad(str, bits) {
* @example
* chunkify("this is a test", 2); // ["th", "is", " i", "s ", "a ", "te", "st"]
*/
function chunkify(str, size) {
let chunks = [];
for (let i = 0; i < str.length; i += size) {
chunks.push(str.slice(i, i + size));
}
return chunks;
function chunkify (str, size) {
const chunks = []
for (let i = 0; i < str.length; i += size) {
chunks.push(str.slice(i, i + size))
}
return chunks
}
/**
@ -54,8 +54,8 @@ function chunkify(str, size) {
* @example
* rotateLeft("1011", 3); // "1101"
*/
function rotateLeft(bits, turns) {
return bits.substr(turns) + bits.substr(0, turns);
function rotateLeft (bits, turns) {
return bits.substr(turns) + bits.substr(0, turns)
}
/**
@ -64,27 +64,27 @@ function rotateLeft(bits, turns) {
* @param {string} message - message to pre-process
* @return {string} - processed message
*/
function preProcess(message) {
//convert message to binary representation padded to
//8 bits, and add 1
let m = message.split("")
.map(e => e.charCodeAt(0))
.map(e => e.toString(2))
.map(e => pad(e, 8))
.join("") + "1";
function preProcess (message) {
// convert message to binary representation padded to
// 8 bits, and add 1
let m = message.split('')
.map(e => e.charCodeAt(0))
.map(e => e.toString(2))
.map(e => pad(e, 8))
.join('') + '1'
//extend message by adding empty bits (0)
while (m.length % 512 !== 448) {
m += "0";
}
// extend message by adding empty bits (0)
while (m.length % 512 !== 448) {
m += '0'
}
//length of message in binary, padded, and extended
//to a 64 bit representation
let ml = (message.length * CHAR_SIZE).toString(2);
ml = pad(ml, 8);
ml = "0".repeat(64 - ml.length) + ml;
// length of message in binary, padded, and extended
// to a 64 bit representation
let ml = (message.length * CHAR_SIZE).toString(2)
ml = pad(ml, 8)
ml = '0'.repeat(64 - ml.length) + ml
return m + ml;
return m + ml
}
/**
@ -93,90 +93,85 @@ function preProcess(message) {
* @param {string} message - message to hash
* @return {string} - message digest (hash value)
*/
function SHA1(message) {
//main variables
let H0 = 0x67452301;
let H1 = 0xEFCDAB89;
let H2 = 0x98BADCFE;
let H3 = 0x10325476;
let H4 = 0xC3D2E1F0;
function SHA1 (message) {
// main variables
let H0 = 0x67452301
let H1 = 0xEFCDAB89
let H2 = 0x98BADCFE
let H3 = 0x10325476
let H4 = 0xC3D2E1F0
//pre-process message and split into 512 bit chunks
let bits = preProcess(message);
let chunks = chunkify(bits, 512);
chunks.forEach(function(chunk, i) {
//break each chunk into 16 32-bit words
let words = chunkify(chunk, 32);
// pre-process message and split into 512 bit chunks
const bits = preProcess(message)
const chunks = chunkify(bits, 512)
//extend 16 32-bit words to 80 32-bit words
for (let i = 16; i < 80; i++) {
let val = [words[i - 3], words[i - 8], words[i - 14], words[i - 16]]
.map(e => parseInt(e, 2))
.reduce((acc, curr) => curr ^ acc, 0);
let bin = (val >>> 0).toString(2);
let paddedBin = pad(bin, 32);
let word = rotateLeft(paddedBin, 1);
words.push(word);
}
chunks.forEach(function (chunk, i) {
// break each chunk into 16 32-bit words
const words = chunkify(chunk, 32)
//initialize variables for this chunk
let [a, b, c, d, e] = [H0, H1, H2, H3, H4];
// extend 16 32-bit words to 80 32-bit words
for (let i = 16; i < 80; i++) {
const val = [words[i - 3], words[i - 8], words[i - 14], words[i - 16]]
.map(e => parseInt(e, 2))
.reduce((acc, curr) => curr ^ acc, 0)
const bin = (val >>> 0).toString(2)
const paddedBin = pad(bin, 32)
const word = rotateLeft(paddedBin, 1)
words.push(word)
}
for (let i = 0; i < 80; i++) {
let f, k;
if (i < 20) {
f = (b & c) | (~b & d);
k = 0x5A827999;
}
else if (i < 40) {
f = b ^ c ^ d;
k = 0x6ED9EBA1;
}
else if (i < 60) {
f = (b & c) | (b & d) | (c & d);
k = 0x8F1BBCDC;
}
else {
f = b ^ c ^ d;
k = 0xCA62C1D6;
}
//make sure f is unsigned
f >>>= 0;
// initialize variables for this chunk
let [a, b, c, d, e] = [H0, H1, H2, H3, H4]
let aRot = rotateLeft(pad(a.toString(2), 32), 5);
let aInt = parseInt(aRot, 2) >>> 0;
let wordInt = parseInt(words[i], 2) >>> 0;
let t = aInt + f + e + k + wordInt;
e = d >>> 0;
d = c >>> 0;
let bRot = rotateLeft(pad(b.toString(2), 32), 30);
c = parseInt(bRot, 2) >>> 0;
b = a >>> 0;
a = t >>> 0;
for (let i = 0; i < 80; i++) {
let f, k
if (i < 20) {
f = (b & c) | (~b & d)
k = 0x5A827999
} else if (i < 40) {
f = b ^ c ^ d
k = 0x6ED9EBA1
} else if (i < 60) {
f = (b & c) | (b & d) | (c & d)
k = 0x8F1BBCDC
} else {
f = b ^ c ^ d
k = 0xCA62C1D6
}
// make sure f is unsigned
f >>>= 0
}
const aRot = rotateLeft(pad(a.toString(2), 32), 5)
const aInt = parseInt(aRot, 2) >>> 0
const wordInt = parseInt(words[i], 2) >>> 0
const t = aInt + f + e + k + wordInt
e = d >>> 0
d = c >>> 0
const bRot = rotateLeft(pad(b.toString(2), 32), 30)
c = parseInt(bRot, 2) >>> 0
b = a >>> 0
a = t >>> 0
}
//add values for this chunk to main hash variables (unsigned)
H0 = (H0 + a) >>> 0;
H1 = (H1 + b) >>> 0;
H2 = (H2 + c) >>> 0;
H3 = (H3 + d) >>> 0;
H4 = (H4 + e) >>> 0;
});
// add values for this chunk to main hash variables (unsigned)
H0 = (H0 + a) >>> 0
H1 = (H1 + b) >>> 0
H2 = (H2 + c) >>> 0
H3 = (H3 + d) >>> 0
H4 = (H4 + e) >>> 0
})
//combine hash values of main hash variables and return
let HH = [H0, H1, H2, H3, H4]
.map(e => e.toString(16))
.map(e => pad(e, 8))
.join("");
// combine hash values of main hash variables and return
const HH = [H0, H1, H2, H3, H4]
.map(e => e.toString(16))
.map(e => pad(e, 8))
.join('')
return HH;
return HH
}
console.log(SHA1("A Test"));
console.log(SHA1("A Test"));
//export SHA1 function
module.exports = SHA1;
console.log(SHA1('A Test'))
console.log(SHA1('A Test'))
// export SHA1 function
module.exports = SHA1

View File

@ -1,23 +1,23 @@
//================================================================
//= ===============================================================
// SHA256.js
//
// Module that replicates the SHA-256 Cryptographic Hash
// Module that replicates the SHA-256 Cryptographic Hash
// function in Javascript.
//================================================================
//= ===============================================================
//main variables
const CHAR_SIZE = 8;
// main variables
const CHAR_SIZE = 8
const K = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
];
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
]
/**
* Adds padding to binary/hex string represention
@ -29,12 +29,12 @@ const K = [
* @example
* pad("10011", 8); // "00010011"
*/
function pad(str, bits) {
let res = str;
while (res.length % bits !== 0) {
res = "0" + res;
}
return res;
function pad (str, bits) {
let res = str
while (res.length % bits !== 0) {
res = '0' + res
}
return res
}
/**
@ -47,12 +47,12 @@ function pad(str, bits) {
* @example
* chunkify("this is a test", 2); // ["th", "is", " i", "s ", "a ", "te", "st"]
*/
function chunkify(str, size) {
let chunks = [];
for (let i = 0; i < str.length; i += size) {
chunks.push(str.slice(i, i + size));
}
return chunks;
function chunkify (str, size) {
const chunks = []
for (let i = 0; i < str.length; i += size) {
chunks.push(str.slice(i, i + size))
}
return chunks
}
/**
@ -65,8 +65,8 @@ function chunkify(str, size) {
* @example
* rotateLeft("1011", 3); // "1101"
*/
function rotateRight(bits, turns) {
return bits.substr(bits.length - turns) + bits.substr(0, bits.length - turns);
function rotateRight (bits, turns) {
return bits.substr(bits.length - turns) + bits.substr(0, bits.length - turns)
}
/**
@ -75,27 +75,27 @@ function rotateRight(bits, turns) {
* @param {string} message - message to pre-process
* @return {string} - processed message
*/
function preProcess(message) {
//covert message to binary representation padded to
//8 bits, and add 1
let m = message.split("")
.map(e => e.charCodeAt(0))
.map(e => e.toString(2))
.map(e => pad(e, 8))
.join("") + "1";
function preProcess (message) {
// covert message to binary representation padded to
// 8 bits, and add 1
let m = message.split('')
.map(e => e.charCodeAt(0))
.map(e => e.toString(2))
.map(e => pad(e, 8))
.join('') + '1'
//extend message by adding empty bits (0)
while (m.length % 512 !== 448) {
m += "0";
}
// extend message by adding empty bits (0)
while (m.length % 512 !== 448) {
m += '0'
}
//length of message in binary, padded, and extended
//to a 64 bit representation
let ml = (message.length * CHAR_SIZE).toString(2);
ml = pad(ml, 8);
ml = "0".repeat(64 - ml.length) + ml;
// length of message in binary, padded, and extended
// to a 64 bit representation
let ml = (message.length * CHAR_SIZE).toString(2)
ml = pad(ml, 8)
ml = '0'.repeat(64 - ml.length) + ml
return m + ml;
return m + ml
}
/**
@ -104,85 +104,85 @@ function preProcess(message) {
* @param {string} message - message to hash
* @return {string} - message digest (hash value)
*/
function SHA256(message) {
//initial hash variables
let H0 = 0x6a09e667;
let H1 = 0xbb67ae85;
let H2 = 0x3c6ef372;
let H3 = 0xa54ff53a;
let H4 = 0x510e527f;
let H5 = 0x9b05688c;
let H6 = 0x1f83d9ab;
let H7 = 0x5be0cd19;
function SHA256 (message) {
// initial hash variables
let H0 = 0x6a09e667
let H1 = 0xbb67ae85
let H2 = 0x3c6ef372
let H3 = 0xa54ff53a
let H4 = 0x510e527f
let H5 = 0x9b05688c
let H6 = 0x1f83d9ab
let H7 = 0x5be0cd19
//pre-process message and split into 512 bit chunks
let bits = preProcess(message);
let chunks = chunkify(bits, 512);
chunks.forEach(function(chunk, i) {
//break each chunk into 16 32-bit words
let words = chunkify(chunk, 32);
// pre-process message and split into 512 bit chunks
const bits = preProcess(message)
const chunks = chunkify(bits, 512)
//extend 16 32-bit words to 80 32-bit words
for (let i = 16; i < 64; i++) {
const W1 = words[i - 15];
const W2 = words[i - 2];
const R1 = rotateRight(W1, 7);
const R2 = rotateRight(W1, 18);
const R3 = rotateRight(W2, 17);
const R4 = rotateRight(W2, 19);
const S0 = parseInt(R1, 2) ^ parseInt(R2, 2) ^ (parseInt(W1, 2) >>> 3);
const S1 = parseInt(R3, 2) ^ parseInt(R4, 2) ^ (parseInt(W2, 2) >>> 10);
const val = parseInt(words[i - 16], 2) + S0 + parseInt(words[i - 7], 2) + S1;
words[i] = pad((val >>> 0).toString(2), 32);
}
chunks.forEach(function (chunk, i) {
// break each chunk into 16 32-bit words
const words = chunkify(chunk, 32)
//initialize variables for this chunk
let [a, b, c, d, e, f, g, h] = [H0, H1, H2, H3, H4, H5, H6, H7];
// extend 16 32-bit words to 80 32-bit words
for (let i = 16; i < 64; i++) {
const W1 = words[i - 15]
const W2 = words[i - 2]
const R1 = rotateRight(W1, 7)
const R2 = rotateRight(W1, 18)
const R3 = rotateRight(W2, 17)
const R4 = rotateRight(W2, 19)
const S0 = parseInt(R1, 2) ^ parseInt(R2, 2) ^ (parseInt(W1, 2) >>> 3)
const S1 = parseInt(R3, 2) ^ parseInt(R4, 2) ^ (parseInt(W2, 2) >>> 10)
const val = parseInt(words[i - 16], 2) + S0 + parseInt(words[i - 7], 2) + S1
words[i] = pad((val >>> 0).toString(2), 32)
}
for (let i = 0; i < 64; i++) {
// initialize variables for this chunk
let [a, b, c, d, e, f, g, h] = [H0, H1, H2, H3, H4, H5, H6, H7]
for (let i = 0; i < 64; i++) {
const S1 = [6, 11, 25]
.map(turns => rotateRight(pad(e.toString(2), 32), turns))
.map(bitstring => parseInt(bitstring, 2))
.reduce((acc, curr) => acc ^ curr, 0) >>> 0;
const CH = ((e & f) ^ (~e & g)) >>> 0;
const temp1 = (h + S1 + CH + K[i] + parseInt(words[i], 2)) >>> 0;
.reduce((acc, curr) => acc ^ curr, 0) >>> 0
const CH = ((e & f) ^ (~e & g)) >>> 0
const temp1 = (h + S1 + CH + K[i] + parseInt(words[i], 2)) >>> 0
const S0 = [2, 13, 22]
.map(turns => rotateRight(pad(a.toString(2), 32), turns))
.map(bitstring => parseInt(bitstring, 2))
.reduce((acc, curr) => acc ^ curr, 0) >>> 0;
const maj = ((a & b) ^ (a & c) ^ (b & c)) >>> 0;
const temp2 = (S0 + maj) >>> 0;
.reduce((acc, curr) => acc ^ curr, 0) >>> 0
const maj = ((a & b) ^ (a & c) ^ (b & c)) >>> 0
const temp2 = (S0 + maj) >>> 0
h = g;
g = f;
f = e;
e = (d + temp1) >>> 0;
d = c;
c = b;
b = a;
a = (temp1 + temp2) >>> 0;
}
h = g
g = f
f = e
e = (d + temp1) >>> 0
d = c
c = b
b = a
a = (temp1 + temp2) >>> 0
}
//add values for this chunk to main hash variables (unsigned)
H0 = (H0 + a) >>> 0;
H1 = (H1 + b) >>> 0;
H2 = (H2 + c) >>> 0;
H3 = (H3 + d) >>> 0;
H4 = (H4 + e) >>> 0;
H5 = (H5 + f) >>> 0;
H6 = (H6 + g) >>> 0;
H7 = (H7 + h) >>> 0;
});
// add values for this chunk to main hash variables (unsigned)
H0 = (H0 + a) >>> 0
H1 = (H1 + b) >>> 0
H2 = (H2 + c) >>> 0
H3 = (H3 + d) >>> 0
H4 = (H4 + e) >>> 0
H5 = (H5 + f) >>> 0
H6 = (H6 + g) >>> 0
H7 = (H7 + h) >>> 0
})
//combine hash values of main hash variables and return
let HH = [H0, H1, H2, H3, H4, H5, H6, H7]
.map(e => e.toString(16))
.map(e => pad(e, 8))
.join("");
// combine hash values of main hash variables and return
const HH = [H0, H1, H2, H3, H4, H5, H6, H7]
.map(e => e.toString(16))
.map(e => pad(e, 8))
.join('')
return HH;
return HH
}
//export SHA256 function
module.exports = SHA256;
// export SHA256 function
module.exports = SHA256

View File

@ -1,27 +1,26 @@
/*Binary Search-Search a sorted array by repeatedly dividing the search interval
/* Binary Search-Search a sorted array by repeatedly dividing the search interval
* in half. Begin with an interval covering the whole array. If the value of the
* search key is less than the item in the middle of the interval, narrow the interval
* to the lower half. Otherwise narrow it to the upper half. Repeatedly check until the
* value is found or the interval is empty.
*/
function binarySearch(arr, i) {
var mid = Math.floor(arr.length / 2);
if (arr[mid] === i) {
console.log("match", arr[mid], i);
return arr[mid];
} else if (arr[mid] < i && arr.length > 1) {
binarySearch(arr.splice(mid, Number.MAX_VALUE), i);
} else if (arr[mid] > i && arr.length > 1) {
binarySearch(arr.splice(0, mid), i);
} else {
console.log("not found", i);
return -1;
}
function binarySearch (arr, i) {
var mid = Math.floor(arr.length / 2)
if (arr[mid] === i) {
console.log('match', arr[mid], i)
return arr[mid]
} else if (arr[mid] < i && arr.length > 1) {
binarySearch(arr.splice(mid, Number.MAX_VALUE), i)
} else if (arr[mid] > i && arr.length > 1) {
binarySearch(arr.splice(0, mid), i)
} else {
console.log('not found', i)
return -1
}
}
var ar = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
binarySearch(ar, 3);
binarySearch(ar, 7);
binarySearch(ar, 13);
var ar = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
binarySearch(ar, 3)
binarySearch(ar, 7)
binarySearch(ar, 13)

View File

@ -1,35 +1,35 @@
/* The Jump Search algorithm allows to combine a linear search with a speed optimization.
* This means that instead of going 1 by 1, we will increase the step of √n and increase that
* This means that instead of going 1 by 1, we will increase the step of √n and increase that
* step of √n which make the step getting bigger and bigger.
* The asymptotic analysis of Jump Search is o(√n). Like the binary search, it needs to be sorted.
* The advantage against binary search is that Jump Search traversed back only once.
*/
const jumpSearch = (arr, value) => {
const length = arr.length;
let step = Math.floor(Math.sqrt(length));
let lowerBound = 0;
while (arr[Math.min(step, length) - 1] < value) {
lowerBound = step;
step += step;
if (lowerBound >= length) {
return -1;
}
const length = arr.length
let step = Math.floor(Math.sqrt(length))
let lowerBound = 0
while (arr[Math.min(step, length) - 1] < value) {
lowerBound = step
step += step
if (lowerBound >= length) {
return -1
}
}
const upperBound = Math.min(step, length);
while (arr[lowerBound] < value) {
lowerBound++;
if (lowerBound === upperBound) {
return -1;
}
const upperBound = Math.min(step, length)
while (arr[lowerBound] < value) {
lowerBound++
if (lowerBound === upperBound) {
return -1
}
if (arr[lowerBound] === value) {
return lowerBound;
}
return -1;
}
if (arr[lowerBound] === value) {
return lowerBound
}
return -1
}
const arr = [0,0,4,7,10,23,34,40,55,68,77,90]
jumpSearch(arr,4);
jumpSearch(arr,34);
jumpSearch(arr,77);
const arr = [0, 0, 4, 7, 10, 23, 34, 40, 55, 68, 77, 90]
jumpSearch(arr, 4)
jumpSearch(arr, 34)
jumpSearch(arr, 77)

View File

@ -4,24 +4,24 @@
* for the target value until a match is found or until all the elements
* have been searched.
*/
function SearchArray(searchNum, ar) {
var position = Search(ar, searchNum);
if (position != -1) {
console.log("The element was found at " + (position + 1));
} else {
console.log("The element not found");
}
function SearchArray (searchNum, ar) {
var position = Search(ar, searchNum)
if (position != -1) {
console.log('The element was found at ' + (position + 1))
} else {
console.log('The element not found')
}
}
// Search “theArray” for the specified “key” value
function Search(theArray, key) {
for (var n = 0; n < theArray.length; n++)
if (theArray[n] == key)
return n;
return -1;
function Search (theArray, key) {
for (var n = 0; n < theArray.length; n++) {
if (theArray[n] == key) { return n }
}
return -1
}
var ar = [1, 2, 3, 4, 5, 6, 7, 8, 9];
SearchArray(3, ar);
SearchArray(4, ar);
SearchArray(11, ar);
var ar = [1, 2, 3, 4, 5, 6, 7, 8, 9]
SearchArray(3, ar)
SearchArray(4, ar)
SearchArray(11, ar)

View File

@ -1,59 +1,58 @@
function TopologicalSorter() {
var graph = {},
isVisitedNode,
finishTimeCount,
finishingTimeList,
nextNode;
function TopologicalSorter () {
var graph = {}
var isVisitedNode
var finishTimeCount
var finishingTimeList
var nextNode
this.addOrder = function (nodeA, nodeB) {
nodeA = String(nodeA);
nodeB = String(nodeB);
graph[nodeA] = graph[nodeA] || [];
graph[nodeA].push(nodeB);
}
this.sortAndGetOrderedItems = function () {
isVisitedNode = Object.create(null);
finishTimeCount = 0;
finishingTimeList = [];
this.addOrder = function (nodeA, nodeB) {
nodeA = String(nodeA)
nodeB = String(nodeB)
graph[nodeA] = graph[nodeA] || []
graph[nodeA].push(nodeB)
}
for (var node in graph) {
if (graph.hasOwnProperty(node) && !isVisitedNode[node]) {
dfsTraverse(node);
}
}
this.sortAndGetOrderedItems = function () {
isVisitedNode = Object.create(null)
finishTimeCount = 0
finishingTimeList = []
finishingTimeList.sort(function (item1, item2) {
return item1.finishTime > item2.finishTime ? -1 : 1;
});
return finishingTimeList.map(function (value) { return value.node })
for (var node in graph) {
if (graph.hasOwnProperty(node) && !isVisitedNode[node]) {
dfsTraverse(node)
}
}
function dfsTraverse(node) {
isVisitedNode[node] = true;
if (graph[node]) {
for (var i = 0; i < graph[node].length; i++) {
nextNode = graph[node][i];
if (isVisitedNode[nextNode]) continue;
dfsTraverse(nextNode);
}
}
finishingTimeList.sort(function (item1, item2) {
return item1.finishTime > item2.finishTime ? -1 : 1
})
finishingTimeList.push({
node: node,
finishTime: ++finishTimeCount
});
return finishingTimeList.map(function (value) { return value.node })
}
function dfsTraverse (node) {
isVisitedNode[node] = true
if (graph[node]) {
for (var i = 0; i < graph[node].length; i++) {
nextNode = graph[node][i]
if (isVisitedNode[nextNode]) continue
dfsTraverse(nextNode)
}
}
finishingTimeList.push({
node: node,
finishTime: ++finishTimeCount
})
}
}
/* TEST */
var topoSorter = new TopologicalSorter();
topoSorter.addOrder(5, 2);
topoSorter.addOrder(5, 0);
topoSorter.addOrder(4, 0);
topoSorter.addOrder(4, 1);
topoSorter.addOrder(2, 3);
topoSorter.addOrder(3, 1);
console.log(topoSorter.sortAndGetOrderedItems());
var topoSorter = new TopologicalSorter()
topoSorter.addOrder(5, 2)
topoSorter.addOrder(5, 0)
topoSorter.addOrder(4, 0)
topoSorter.addOrder(4, 1)
topoSorter.addOrder(2, 3)
topoSorter.addOrder(3, 1)
console.log(topoSorter.sortAndGetOrderedItems())

View File

@ -3,53 +3,49 @@
* sorted in ascending order.
*/
Array.prototype.isSorted = function () {
const length = this.length
let length = this.length;
if (length < 2) {
return true
}
if (length < 2) {
return true;
for (let i = 0; i < length - 1; i++) {
if (this[i] > this[i + 1]) {
return false
}
for (let i = 0; i < length - 1; i++) {
if (this[i] > this[i + 1]) {
return false;
}
}
return true;
};
}
return true
}
/*
* A simple helper function to shuffle the array randomly in place.
*/
Array.prototype.shuffle = function () {
for (let i = this.length - 1; i; i--) {
let m = Math.floor(Math.random() * i);
let n = this[i - 1];
this[i - 1] = this[m];
this[m] = n;
}
};
for (let i = this.length - 1; i; i--) {
const m = Math.floor(Math.random() * i)
const n = this[i - 1]
this[i - 1] = this[m]
this[m] = n
}
}
/*
* Implementation of the bogosort algorithm. This sorting algorithm randomly
* rearranges the array until it is sorted.
* For more information see: https://en.wikipedia.org/wiki/Bogosort
*/
function bogoSort(items) {
while (!items.isSorted()) {
items.shuffle()
}
return items;
function bogoSort (items) {
while (!items.isSorted()) {
items.shuffle()
}
return items
}
//Implementation of bogoSort
// Implementation of bogoSort
var ar = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(ar);
bogoSort(ar);
//Array after sort
console.log(ar);
var ar = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(ar)
bogoSort(ar)
// Array after sort
console.log(ar)

View File

@ -1,4 +1,4 @@
/*
/*
Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the
elements of an array into a number of buckets. Each bucket is then sorted individually, either using
a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a
@ -11,52 +11,50 @@ Time Complexity of Solution:
Best Case O(n); Average Case O(n); Worst Case O(n)
*/
function bucketSort(list, size){
if(undefined === size){
size = 5;
function bucketSort (list, size) {
if (undefined === size) {
size = 5
}
if (list.length === 0) {
return list
}
let min = list[0]
let max = list[0]
// find min and max
for (let iList = 0; iList < list.length; iList++) {
if (list[iList] < min) {
min = list[iList]
} else if (list[iList] > max) {
max = list[iList]
}
if(list.length === 0){
return list;
}
let min = list[0];
let max = list[0];
// find min and max
for(let iList = 0; iList < list.length; iList++){
if(list[iList] < min){
min = list[iList];
} else if(list[iList] > max){
max = list[iList];
}
}
// how many buckets we need
let count = Math.floor((max - min) / size) + 1;
}
// how many buckets we need
const count = Math.floor((max - min) / size) + 1
// create buckets
let buckets = [];
for(let iCount = 0; iCount < count; iCount++){
buckets.push([]);
}
// create buckets
const buckets = []
for (let iCount = 0; iCount < count; iCount++) {
buckets.push([])
}
// bucket fill
for(let iBucket = 0; iBucket < list.length; iBucket++){
let key = Math.floor((list[iBucket] - min) / size);
buckets[key].push(list[iBucket]);
// bucket fill
for (let iBucket = 0; iBucket < list.length; iBucket++) {
const key = Math.floor((list[iBucket] - min) / size)
buckets[key].push(list[iBucket])
}
const sorted = []
// now sort every bucket and merge it to the sorted list
for (let iBucket = 0; iBucket < buckets.length; iBucket++) {
const arr = buckets[iBucket].sort()
for (let iSorted = 0; iSorted < arr.length; iSorted++) {
sorted.push(arr[iSorted])
}
let sorted = [];
// now sort every bucket and merge it to the sorted list
for(let iBucket = 0; iBucket < buckets.length; iBucket++){
let arr = buckets[iBucket].sort();
for(let iSorted = 0; iSorted < arr.length; iSorted++){
sorted.push(arr[iSorted]);
}
}
return sorted;
}
return sorted
}
let arrOrignal = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(arrOrignal);
arrSorted = bucketSort(arrOrignal);
//Array after sort
console.log(arrSorted);
const arrOrignal = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(arrOrignal)
arrSorted = bucketSort(arrOrignal)
// Array after sort
console.log(arrSorted)

View File

@ -4,42 +4,41 @@
* more information: https://en.wikipedia.org/wiki/Bubble_sort
*
*/
function cocktailShakerSort(items) {
function cocktailShakerSort (items) {
for (let i = items.length - 1; i > 0; i--) {
let swapped = false
let temp, j
for (let i = items.length - 1; i > 0; i--) {
let swapped = false;
let temp, j;
// backwards
for (j = items.length -1; j > i; j--) {
if (items[j] < items[j - 1]) {
temp = items[j];
items[j] = items[j - 1];
items[j - 1] = temp;
swapped = true;
}
}
//forwards
for (j = 0; j < i; j++) {
if (items[j] > items[j + 1]) {
temp = items[j];
items[j] = items[j + 1];
items[j + 1] = temp;
swapped = true;
}
}
if (!swapped) {
return;
}
// backwards
for (j = items.length - 1; j > i; j--) {
if (items[j] < items[j - 1]) {
temp = items[j]
items[j] = items[j - 1]
items[j - 1] = temp
swapped = true
}
}
// forwards
for (j = 0; j < i; j++) {
if (items[j] > items[j + 1]) {
temp = items[j]
items[j] = items[j + 1]
items[j + 1] = temp
swapped = true
}
}
if (!swapped) {
return
}
}
}
//Implementation of cocktailShakerSort
// Implementation of cocktailShakerSort
var ar = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(ar);
cocktailShakerSort(ar);
//Array after sort
console.log(ar);
var ar = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(ar)
cocktailShakerSort(ar)
// Array after sort
console.log(ar)

View File

@ -1,53 +1,50 @@
/*
Wikipedia says: Comb sort improves on bubble sort.
/*
Wikipedia says: Comb sort improves on bubble sort.
The basic idea is to eliminate turtles, or small values
near the end of the list, since in a bubble sort these slow the sorting
down tremendously. Rabbits, large values around the beginning of the list,
The basic idea is to eliminate turtles, or small values
near the end of the list, since in a bubble sort these slow the sorting
down tremendously. Rabbits, large values around the beginning of the list,
do not pose a problem in bubble sort.
In bubble sort, when any two elements are compared, they always have a
gap (distance from each other) of 1. The basic idea of comb sort is
that the gap can be much more than 1. The inner loop of bubble sort,
which does the actual swap, is modified such that gap between swapped
elements goes down (for each iteration of outer loop) in steps of
In bubble sort, when any two elements are compared, they always have a
gap (distance from each other) of 1. The basic idea of comb sort is
that the gap can be much more than 1. The inner loop of bubble sort,
which does the actual swap, is modified such that gap between swapped
elements goes down (for each iteration of outer loop) in steps of
a "shrink factor" k: [ n/k, n/k2, n/k3, ..., 1 ].
*/
function combSort(list) {
if (list.length === 0) {
return list;
}
let shrink = 1.3;
let gap = list.length;
let isSwapped = true;
let i = 0
while (gap > 1 || isSwapped) {
// Update the gap value for a next comb
gap = parseInt(parseFloat(gap) / shrink, 10);
isSwapped = false
i = 0
while (gap + i < list.length) {
if (list[i] > list[i + gap]) {
let value = list[i];
list[i] = list[i + gap];
list[i + gap] = value;
isSwapped = true;
}
i += 1
}
}
function combSort (list) {
if (list.length === 0) {
return list
}
const shrink = 1.3
let gap = list.length
let isSwapped = true
let i = 0
while (gap > 1 || isSwapped) {
// Update the gap value for a next comb
gap = parseInt(parseFloat(gap) / shrink, 10)
isSwapped = false
i = 0
while (gap + i < list.length) {
if (list[i] > list[i + gap]) {
const value = list[i]
list[i] = list[i + gap]
list[i + gap] = value
isSwapped = true
}
i += 1
}
}
return list
}
let arrOrignal = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(arrOrignal);
arrSorted = combSort(arrOrignal);
//Array after sort
console.log(arrSorted);
const arrOrignal = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(arrOrignal)
arrSorted = combSort(arrOrignal)
// Array after sort
console.log(arrSorted)

View File

@ -5,33 +5,33 @@
* counting sort visualization: https://www.cs.usfca.edu/~galles/visualization/CountingSort.html
*/
function countingSort(arr, min, max) {
let i;
let z = 0;
const count = [];
function countingSort (arr, min, max) {
let i
let z = 0
const count = []
for (i = min; i <= max; i++) {
count[i] = 0;
count[i] = 0
}
for (i = 0; i < arr.length; i++) {
count[arr[i]]++;
count[arr[i]]++
}
for (i = min; i <= max; i++) {
while (count[i]-- > 0) {
arr[z++] = i;
arr[z++] = i
}
}
return arr;
return arr
}
const arr = [3, 0, 2, 5, 4, 1];
const arr = [3, 0, 2, 5, 4, 1]
// Array before Sort
console.log("-----before sorting-----");
console.log(arr);
console.log('-----before sorting-----')
console.log(arr)
// Array after sort
console.log("-----after sorting-----");
console.log(countingSort(arr, 0, 5));
console.log('-----after sorting-----')
console.log(countingSort(arr, 0, 5))

View File

@ -1,62 +1,58 @@
/*
Wikipedia says: Cycle sort is an in-place, unstable sorting algorithm,
a comparison sort that is theoretically optimal in terms of the total
number of writes to the original array, unlike any other in-place sorting
algorithm. It is based on the idea that the permutation to be sorted can
/*
Wikipedia says: Cycle sort is an in-place, unstable sorting algorithm,
a comparison sort that is theoretically optimal in terms of the total
number of writes to the original array, unlike any other in-place sorting
algorithm. It is based on the idea that the permutation to be sorted can
be factored into cycles, which can individually be rotated to give a sorted result.
*/
function cycleSort(list) {
function cycleSort (list) {
let writes = 0
for (let cycleStart = 0; cycleStart < list.length; cycleStart++) {
let value = list[cycleStart]
let position = cycleStart
let writes = 0;
for (let cycleStart = 0; cycleStart < list.length; cycleStart++) {
let value = list[cycleStart];
let position = cycleStart;
// search position
for (let i = cycleStart+1; i < list.length; i++) {
if (list[i] < value) {
position++;
}
}
// if its the same continue
if (position == cycleStart) {
continue;
}
while (value == list[position]) {
position++;
}
let oldValue = list[position];
list[position] = value;
value = oldValue;
writes++;
// rotate the rest
while (position != cycleStart) {
position = cycleStart;
for (let i = cycleStart +1; i < list.length; i++) {
if (list[i] < value) {
position++;
}
}
while (value == list[position]) {
position++;
}
let oldValueCycle = list[position];
list[position] = value;
value = oldValueCycle;
writes++;
}
// search position
for (let i = cycleStart + 1; i < list.length; i++) {
if (list[i] < value) {
position++
}
}
return writes;
// if its the same continue
if (position == cycleStart) {
continue
}
while (value == list[position]) {
position++
}
const oldValue = list[position]
list[position] = value
value = oldValue
writes++
// rotate the rest
while (position != cycleStart) {
position = cycleStart
for (let i = cycleStart + 1; i < list.length; i++) {
if (list[i] < value) {
position++
}
}
while (value == list[position]) {
position++
}
const oldValueCycle = list[position]
list[position] = value
value = oldValueCycle
writes++
}
}
return writes
}
let arrOrignal = [5, 6, 7, 8, 1, 2,12, 14];
//Array before Sort
console.log(arrOrignal);
cycleSort(arrOrignal);
//Array after sort
console.log(arrOrignal);
const arrOrignal = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(arrOrignal)
cycleSort(arrOrignal)
// Array after sort
console.log(arrOrignal)

View File

@ -4,82 +4,82 @@
* more information: https://en.wikipedia.org/wiki/Flashsort
*/
function flashSort(arr) {
let max = 0, min = arr[0];
let n = arr.length;
let m = ~~(0.45 * n);
let l = new Array(m);
function flashSort (arr) {
let max = 0; let min = arr[0]
const n = arr.length
const m = ~~(0.45 * n)
const l = new Array(m)
for (let i = 1; i < n; ++i) {
if (arr[i] < min) {
min = arr[i];
min = arr[i]
}
if (arr[i] > arr[max]) {
max = i;
max = i
}
}
if (min === arr[max]) {
return arr;
return arr
}
let c1 = (m - 1) / (arr[max] - min);
const c1 = (m - 1) / (arr[max] - min)
for (let k = 0; k < m; k++) {
l[k] = 0;
l[k] = 0
}
for (let j = 0; j < n; ++j) {
let k = ~~(c1 * (arr[j] - min));
++l[k];
const k = ~~(c1 * (arr[j] - min))
++l[k]
}
for (let p = 1; p < m; ++p) {
l[p] = l[p] + l[p - 1];
l[p] = l[p] + l[p - 1]
}
let hold = arr[max];
arr[max] = arr[0];
arr[0] = hold;
let hold = arr[max]
arr[max] = arr[0]
arr[0] = hold
// permutation
let move = 0, t, flash;
let j = 0;
let k = m - 1;
let move = 0; let t; let flash
let j = 0
let k = m - 1
while (move < (n - 1)) {
while (j > (l[k] - 1)) {
++j;
k = ~~(c1 * (arr[j] - min));
++j
k = ~~(c1 * (arr[j] - min))
}
if (k < 0) break;
flash = arr[j];
if (k < 0) break
flash = arr[j]
while (j !== l[k]) {
k = ~~(c1 * (flash - min));
hold = arr[t = --l[k]];
arr[t] = flash;
flash = hold;
++move;
k = ~~(c1 * (flash - min))
hold = arr[t = --l[k]]
arr[t] = flash
flash = hold
++move
}
}
// insertion
for (j = 1; j < n; j++) {
hold = arr[j];
let i = j - 1;
hold = arr[j]
let i = j - 1
while (i >= 0 && arr[i] > hold) {
arr[i + 1] = arr[i--];
arr[i + 1] = arr[i--]
}
arr[i + 1] = hold;
arr[i + 1] = hold
}
return arr;
return arr
}
const array = [3, 0, 2, 5, -1, 4, 1, -2];
const array = [3, 0, 2, 5, -1, 4, 1, -2]
// Array before Sort
console.log("-----before sorting-----");
console.log(array);
console.log('-----before sorting-----')
console.log(array)
// Array after sort
console.log("-----after sorting-----");
console.log(flashSort(array));
console.log('-----after sorting-----')
console.log(flashSort(array))

View File

@ -3,34 +3,31 @@
* more information: https://en.wikipedia.org/wiki/Gnome_sort
*
*/
function gnomeSort(items) {
function gnomeSort (items) {
if (items.length <= 1) {
return
}
if (items.length <= 1) {
let i = 1
return;
}
let i = 1;
while (i < items.length) {
if (items[i - 1] <= items[i]) {
i++;
} else {
let temp = items[i];
items[i] = items[i - 1];
items[i - 1] = temp;
i = Math.max(1, i - 1);
}
while (i < items.length) {
if (items[i - 1] <= items[i]) {
i++
} else {
const temp = items[i]
items[i] = items[i - 1]
items[i - 1] = temp
i = Math.max(1, i - 1)
}
}
}
//Implementation of gnomeSort
// Implementation of gnomeSort
var ar = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(ar);
gnomeSort(ar);
//Array after sort
console.log(ar);
var ar = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(ar)
gnomeSort(ar)
// Array after sort
console.log(ar)

View File

@ -6,54 +6,52 @@
* Source: https://en.wikipedia.org/wiki/Heap_(data_structure)
*/
Array.prototype.heapify = function (index, heapSize) {
let largest = index;
let leftIndex = 2 * index + 1;
let rightIndex = 2 * index + 2;
let largest = index
const leftIndex = 2 * index + 1
const rightIndex = 2 * index + 2
if (leftIndex < heapSize && this[leftIndex] > this[largest]) {
largest = leftIndex;
largest = leftIndex
}
if (rightIndex < heapSize && this[rightIndex] > this[largest]) {
largest = rightIndex;
largest = rightIndex
}
if (largest !== index) {
let temp = this[largest];
this[largest] = this[index];
this[index] = temp;
const temp = this[largest]
this[largest] = this[index]
this[index] = temp
this.heapify(largest, heapSize);
this.heapify(largest, heapSize)
}
};
}
/*
* Heap sort sorts an array by building a heap from the array and
* utilizing the heap property.
* For more information see: https://en.wikipedia.org/wiki/Heapsort
*/
function heapSort(items) {
let length = items.length;
function heapSort (items) {
const length = items.length
for (let i = Math.floor(length / 2) - 1; i > -1; i--) {
items.heapify(i, length);
items.heapify(i, length)
}
for (let j = length -1; j > 0; j--) {
let tmp = items[0];
items[0] = items[j];
items[j] = tmp;
items.heapify(0, j);
for (let j = length - 1; j > 0; j--) {
const tmp = items[0]
items[0] = items[j]
items[j] = tmp
items.heapify(0, j)
}
return items;
return items
}
//Implementation of heapSort
// Implementation of heapSort
var ar = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(ar);
heapSort(ar);
//Array after sort
console.log(ar);
var ar = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(ar)
heapSort(ar)
// Array after sort
console.log(ar)

View File

@ -1,24 +1,24 @@
/*In insertion sort, we divide the initial unsorted array into two parts;
/* In insertion sort, we divide the initial unsorted array into two parts;
* sorted part and unsorted part. Initially the sorted part just has one
* element (Array of only 1 element is a sorted array). We then pick up
* element one by one from unsorted part; insert into the sorted part at
* the correct position and expand sorted part one element at a time.
*/
function insertionSort(unsortedList) {
var len = unsortedList.length;
function insertionSort (unsortedList) {
var len = unsortedList.length
for (var i = 1; i < len; i++) {
var tmp = unsortedList[i]; //Copy of the current element.
/*Check through the sorted part and compare with the number in tmp. If large, shift the number*/
var tmp = unsortedList[i] // Copy of the current element.
/* Check through the sorted part and compare with the number in tmp. If large, shift the number */
for (var j = i - 1; j >= 0 && (unsortedList[j] > tmp); j--) {
//Shift the number
unsortedList[j + 1] = unsortedList[j];
// Shift the number
unsortedList[j + 1] = unsortedList[j]
}
//Insert the copied number at the correct position
//in sorted part.
unsortedList[j + 1] = tmp;
// Insert the copied number at the correct position
// in sorted part.
unsortedList[j + 1] = tmp
}
}
var arr = [5, 3, 1, 2, 4, 8, 3, 8];
insertionSort(arr);
console.log(arr);
var arr = [5, 3, 1, 2, 4, 8, 3, 8]
insertionSort(arr)
console.log(arr)

View File

@ -1,8 +1,8 @@
/**
* Merge Sort is an algorithm where the main list is divided down into two half
* sized lists, which then have merge sort called on these two smaller lists
* sized lists, which then have merge sort called on these two smaller lists
* recursively until there is only a sorted list of one.
*
*
* On the way up the recursive calls, the lists will be merged together inserting
* the smaller value first, creating a larger sorted list.
*/
@ -13,17 +13,17 @@
* @param {Array} list2 - sublist to break down
* @return {Array} merged list
*/
function merge(list1, list2) {
var results = [];
function merge (list1, list2) {
var results = []
while(list1.length && list2.length) {
while (list1.length && list2.length) {
if (list1[0] <= list2[0]) {
results.push(list1.shift());
results.push(list1.shift())
} else {
results.push(list2.shift());
results.push(list2.shift())
}
}
return results.concat(list1, list2);
return results.concat(list1, list2)
}
/**
@ -31,19 +31,18 @@ function merge(list1, list2) {
* @param {Array} list - list to be sorted
* @return {Array} sorted list
*/
function mergeSort(list) {
if (list.length < 2) return list;
function mergeSort (list) {
if (list.length < 2) return list
var listHalf = Math.floor(list.length/2);
var subList1 = list.slice(0, listHalf);
var subList2 = list.slice(listHalf, list.length);
var listHalf = Math.floor(list.length / 2)
var subList1 = list.slice(0, listHalf)
var subList2 = list.slice(listHalf, list.length)
return merge(mergeSort(subList1), mergeSort(subList2));
return merge(mergeSort(subList1), mergeSort(subList2))
}
// Merge Sort Example
var unsortedArray = [10, 5, 3, 8, 2, 6, 4, 7, 9, 1];
var sortedArray = mergeSort(unsortedArray);
console.log('Before:', unsortedArray, 'After:', sortedArray);
var unsortedArray = [10, 5, 3, 8, 2, 6, 4, 7, 9, 1]
var sortedArray = mergeSort(unsortedArray)
console.log('Before:', unsortedArray, 'After:', sortedArray)

View File

@ -2,37 +2,36 @@
* Quick sort is a comparison sorting algorithm that uses a divide and conquer strategy.
* For more information see here: https://en.wikipedia.org/wiki/Quicksort
*/
function quickSort(items) {
var length = items.length;
function quickSort (items) {
var length = items.length
if (length <= 1) {
return items;
return items
}
var PIVOT = items[0];
var GREATER = [];
var LESSER = [];
var PIVOT = items[0]
var GREATER = []
var LESSER = []
for (var i = 1; i < length; i++) {
if (items[i] > PIVOT) {
GREATER.push(items[i]);
GREATER.push(items[i])
} else {
LESSER.push(items[i]);
LESSER.push(items[i])
}
}
var sorted = quickSort(LESSER);
sorted.push(PIVOT);
sorted = sorted.concat(quickSort(GREATER));
return sorted;
var sorted = quickSort(LESSER)
sorted.push(PIVOT)
sorted = sorted.concat(quickSort(GREATER))
return sorted
}
//Implementation of quick sort
// Implementation of quick sort
var ar = [0, 5, 3, 2, 2];
//Array before Sort
console.log(ar);
ar = quickSort(ar);
//Array after sort
console.log(ar);
var ar = [0, 5, 3, 2, 2]
// Array before Sort
console.log(ar)
ar = quickSort(ar)
// Array after sort
console.log(ar)

View File

@ -4,50 +4,49 @@
* significant position.
* For more information see: https://en.wikipedia.org/wiki/Radix_sort
*/
function radixSort(items, RADIX) {
//default radix is then because we usually count to base 10
function radixSort (items, RADIX) {
// default radix is then because we usually count to base 10
if (RADIX === undefined || RADIX < 1) {
RADIX = 10;
RADIX = 10
}
var maxLength = false;
var placement = 1;
var maxLength = false
var placement = 1
while (!maxLength) {
maxLength = true;
var buckets = [];
maxLength = true
var buckets = []
for (var i = 0; i < RADIX; i++) {
buckets.push([]);
buckets.push([])
}
for (var j = 0; j < items.length; j++) {
var tmp = items[j] / placement;
buckets[Math.floor(tmp % RADIX)].push(items[j]);
var tmp = items[j] / placement
buckets[Math.floor(tmp % RADIX)].push(items[j])
if (maxLength && tmp > 0) {
maxLength = false;
maxLength = false
}
}
var a = 0;
var a = 0
for (var b = 0; b < RADIX; b++) {
var buck = buckets[b];
var buck = buckets[b]
for (var k = 0; k < buck.length; k++) {
items[a] = buck[k];
a++;
items[a] = buck[k]
a++
}
}
placement *= RADIX;
placement *= RADIX
}
return items;
return items
}
//Implementation of radixSort
// Implementation of radixSort
var ar = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(ar);
radixSort(ar);
//Array after sort
console.log(ar);
var ar = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(ar)
radixSort(ar)
// Array after sort
console.log(ar)

View File

@ -1,4 +1,4 @@
/*The selection sort algorithm sorts an array by repeatedly finding the minimum element
/* The selection sort algorithm sorts an array by repeatedly finding the minimum element
*(considering ascending order) from unsorted part and putting it at the beginning. The
*algorithm maintains two subarrays in a given array.
*1) The subarray which is already sorted.
@ -7,31 +7,31 @@
*In every iteration of selection sort, the minimum element (considering ascending order)
*from the unsorted subarray is picked and moved to the sorted subarray.
*/
function selectionSort(items) {
var length = items.length;
function selectionSort (items) {
var length = items.length
for (var i = 0; i < length - 1; i++) {
//Number of passes
var min = i; //min holds the current minimum number position for each pass; i holds the Initial min number
for (var j = i + 1; j < length; j++) { //Note that j = i + 1 as we only need to go through unsorted array
if (items[j] < items[min]) { //Compare the numbers
min = j; //Change the current min number position if a smaller num is found
// Number of passes
var min = i // min holds the current minimum number position for each pass; i holds the Initial min number
for (var j = i + 1; j < length; j++) { // Note that j = i + 1 as we only need to go through unsorted array
if (items[j] < items[min]) { // Compare the numbers
min = j // Change the current min number position if a smaller num is found
}
}
if (min != i) {
//After each pass, if the current min num != initial min num, exchange the position.
//Swap the numbers
var tmp = items[i];
items[i] = items[min];
items[min] = tmp;
// After each pass, if the current min num != initial min num, exchange the position.
// Swap the numbers
var tmp = items[i]
items[i] = items[min]
items[min] = tmp
}
}
}
//Implementation of Selection Sort
// Implementation of Selection Sort
var ar = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(ar);
selectionSort(ar);
//Array after sort
console.log(ar);
var ar = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(ar)
selectionSort(ar)
// Array after sort
console.log(ar)

View File

@ -3,38 +3,34 @@
* more information: https://en.wikipedia.org/wiki/Shellsort
*
*/
function shellSort(items) {
function shellSort (items) {
var interval = 1
var interval = 1;
while (interval < items.length / 3) {
interval = interval * 3 + 1
}
while (interval < items.length / 3) {
while (interval > 0) {
for (var outer = interval; outer < items.length; outer++) {
var value = items[outer]
var inner = outer
interval = interval * 3 + 1;
while (inner > interval - 1 && items[inner - interval] >= value) {
items[inner] = items[inner - interval]
inner = inner - interval
}
items[inner] = value
}
while (interval > 0) {
for (var outer = interval; outer < items.length; outer++) {
var value = items[outer];
var inner = outer;
while (inner > interval - 1 && items[inner - interval] >= value) {
items[inner] = items[inner - interval];
inner = inner - interval;
}
items[inner] = value;
}
interval = (interval - 1) / 3;
}
return items;
interval = (interval - 1) / 3
}
return items
}
//Implementation of shellSort
// Implementation of shellSort
var ar = [5, 6, 7, 8, 1, 2, 12, 14];
//Array before Sort
console.log(ar);
shellSort(ar);
//Array after sort
console.log(ar);
var ar = [5, 6, 7, 8, 1, 2, 12, 14]
// Array before Sort
console.log(ar)
shellSort(ar)
// Array after sort
console.log(ar)

View File

@ -5,22 +5,22 @@
*/
Array.prototype.wiggleSort = function () {
for (let i = 0; i < this.length; ++i) {
const shouldNotBeLessThan = i % 2;
const isLessThan = this[i] < this[i + 1];
if (shouldNotBeLessThan && isLessThan) {
[this[i], this[i + 1]] = [this[i + 1], this[i]];
}
for (let i = 0; i < this.length; ++i) {
const shouldNotBeLessThan = i % 2
const isLessThan = this[i] < this[i + 1]
if (shouldNotBeLessThan && isLessThan) {
[this[i], this[i + 1]] = [this[i + 1], this[i]]
}
return this;
};
}
return this
}
//Implementation of wiggle sort
// Implementation of wiggle sort
var arr = [3, 5, 2, 1, 6, 4];
//Array before Wiggle Sort
console.log(arr); //[3, 5, 2, 1, 6, 4]
var arr = [3, 5, 2, 1, 6, 4]
// Array before Wiggle Sort
console.log(arr) // [3, 5, 2, 1, 6, 4]
arr.wiggleSort()
//Array after wiggle sort
console.log(arr); // [ 3, 5, 2, 6, 1, 4 ]
// Array after wiggle sort
console.log(arr) // [ 3, 5, 2, 6, 1, 4 ]

View File

@ -1,325 +1,307 @@
/*
author: Christian Bender
license: MIT-license
The namespace LinearAlgebra contains useful classes and functions for dealing with
linear algebra under JavaScript.
*/
var LinearAlgebra;
(function (LinearAlgebra) {
/*
/*
class: Vector
This class represents a vector of arbitrary size and operations on it.
*/
var Vector = /** @class */ (function () {
// constructor
function Vector(N, comps) {
if (comps === void 0) { comps = []; }
this.components = new Array(N);
if (comps.length == 0) {
for (var i = 0; i < N; i++) {
this.components[i] = 0.0;
}
}
else {
if (N == comps.length) {
this.components = comps;
}
else {
throw "Vector: invalide size!";
}
}
} // end of constructor
// returns the size of this vector.
// not the eulidean length!
Vector.prototype.size = function () {
return this.components.length;
};
// computes the eulidean length.
Vector.prototype.eulideanLength = function () {
var sum = 0;
for (var i = 0; i < this.components.length; i++) {
sum += this.components[i] * this.components[i];
}
return Math.sqrt(sum);
};
// getter for the components of the vector.
// returns a specified component (index)
Vector.prototype.component = function (index) {
return this.components[index];
};
// setter for a specified component of this vector.
Vector.prototype.changeComponent = function (index, value) {
if (index >= 0 && index < this.components.length) {
this.components[index] = value;
}
else {
throw "changeComponent: index out of bounds!";
}
};
// vector addition
Vector.prototype.add = function (other) {
if (this.size() == other.size()) {
var SIZE = this.size();
var ans = new Vector(SIZE);
for (var i = 0; i < SIZE; i++) {
ans.changeComponent(i, (this.components[i] + other.component(i)));
}
return ans;
}
else {
throw "add: vector must have same size!";
}
};
// vector subtraction
Vector.prototype.sub = function (other) {
if (this.size() == other.size()) {
var SIZE = this.size();
var ans = new Vector(SIZE);
for (var i = 0; i < SIZE; i++) {
ans.changeComponent(i, (this.components[i] - other.component(i)));
}
return ans;
}
else {
throw "add: vector must have same size!";
}
};
// dot-product
Vector.prototype.dot = function (other) {
var sum = 0;
if (other.size() == this.size()) {
var SIZE = other.size();
for (var i = 0; i < SIZE; i++) {
sum += this.components[i] * other.component(i);
}
return sum;
}
else {
throw "dot: vectors must have same size!";
}
};
// scalar multiplication
Vector.prototype.scalar = function (s) {
var SIZE = this.size();
var ans = new Vector(SIZE);
for (var i = 0; i < SIZE; i++) {
ans.changeComponent(i, (this.components[i] * s));
}
return ans;
};
// returns a string representation of this vector.
Vector.prototype.toString = function () {
var ans = "(";
var SIZE = this.components.length;
for (var i = 0; i < SIZE; i++) {
if (i < SIZE - 1) {
ans += this.components[i] + ",";
}
else {
ans += this.components[i] + ")";
}
}
return ans;
};
// converts this vector in a unit basis vector and returns it.
// the One is on position 'pos'
Vector.prototype.createUnitBasis = function (pos) {
if (pos >= 0 && pos < this.components.length) {
for (var i = 0; i < this.components.length; i++) {
if (i == pos) {
this.components[i] = 1.0;
}
else {
this.components[i] = 0.0;
}
}
}
else {
throw "createUnitBasis: index out of bounds";
}
return this;
};
// normalizes this vector and returns it.
Vector.prototype.norm = function () {
var SIZE = this.size();
var quotient = 1.0 / this.eulideanLength();
for (var i = 0; i < SIZE; i++) {
this.components[i] = this.components[i] * quotient;
}
return this;
};
// returns true if the vectors are equal otherwise false.
Vector.prototype.equal = function (other) {
var ans = true;
var SIZE = this.size();
var EPSILON = 0.001;
if (SIZE == other.size()) {
for (var i = 0; i < SIZE; i++) {
if (Math.abs(this.components[i] - other.component(i)) > EPSILON) {
ans = false;
}
}
}
else {
ans = false;
}
return ans;
};
return Vector;
}()); // end of class Vector
LinearAlgebra.Vector = Vector;
// -------------- global functions ---------------------------------
// returns a unit basis vector of size N with a One on position 'pos'
function unitBasisVector(N, pos) {
var ans = new Vector(N);
var Vector = /** @class */ (function () {
// constructor
function Vector (N, comps) {
if (comps === void 0) { comps = [] }
this.components = new Array(N)
if (comps.length == 0) {
for (var i = 0; i < N; i++) {
if (i == pos) {
ans.changeComponent(i, 1.0);
}
else {
ans.changeComponent(i, 0);
}
this.components[i] = 0.0
}
return ans;
}
LinearAlgebra.unitBasisVector = unitBasisVector;
// returns a random vector with integer components (between 'a' and 'b') of size N.
function randomVectorInt(N, a, b) {
var ans = new Vector(N);
for (var i = 0; i < N; i++) {
ans.changeComponent(i, (Math.floor((Math.random() * b) + a)));
} else {
if (N == comps.length) {
this.components = comps
} else {
throw 'Vector: invalide size!'
}
return ans;
}
} // end of constructor
// returns the size of this vector.
// not the eulidean length!
Vector.prototype.size = function () {
return this.components.length
}
LinearAlgebra.randomVectorInt = randomVectorInt;
// returns a random vector with floating point components (between 'a' and 'b') of size N.
function randomVectorFloat(N, a, b) {
var ans = new Vector(N);
for (var i = 0; i < N; i++) {
ans.changeComponent(i, ((Math.random() * b) + a));
// computes the eulidean length.
Vector.prototype.eulideanLength = function () {
var sum = 0
for (var i = 0; i < this.components.length; i++) {
sum += this.components[i] * this.components[i]
}
return Math.sqrt(sum)
}
// getter for the components of the vector.
// returns a specified component (index)
Vector.prototype.component = function (index) {
return this.components[index]
}
// setter for a specified component of this vector.
Vector.prototype.changeComponent = function (index, value) {
if (index >= 0 && index < this.components.length) {
this.components[index] = value
} else {
throw 'changeComponent: index out of bounds!'
}
}
// vector addition
Vector.prototype.add = function (other) {
if (this.size() == other.size()) {
var SIZE = this.size()
var ans = new Vector(SIZE)
for (var i = 0; i < SIZE; i++) {
ans.changeComponent(i, (this.components[i] + other.component(i)))
}
return ans;
return ans
} else {
throw 'add: vector must have same size!'
}
}
LinearAlgebra.randomVectorFloat = randomVectorFloat;
// ------------------ end of global functions -----------------------------
/*
// vector subtraction
Vector.prototype.sub = function (other) {
if (this.size() == other.size()) {
var SIZE = this.size()
var ans = new Vector(SIZE)
for (var i = 0; i < SIZE; i++) {
ans.changeComponent(i, (this.components[i] - other.component(i)))
}
return ans
} else {
throw 'add: vector must have same size!'
}
}
// dot-product
Vector.prototype.dot = function (other) {
var sum = 0
if (other.size() == this.size()) {
var SIZE = other.size()
for (var i = 0; i < SIZE; i++) {
sum += this.components[i] * other.component(i)
}
return sum
} else {
throw 'dot: vectors must have same size!'
}
}
// scalar multiplication
Vector.prototype.scalar = function (s) {
var SIZE = this.size()
var ans = new Vector(SIZE)
for (var i = 0; i < SIZE; i++) {
ans.changeComponent(i, (this.components[i] * s))
}
return ans
}
// returns a string representation of this vector.
Vector.prototype.toString = function () {
var ans = '('
var SIZE = this.components.length
for (var i = 0; i < SIZE; i++) {
if (i < SIZE - 1) {
ans += this.components[i] + ','
} else {
ans += this.components[i] + ')'
}
}
return ans
}
// converts this vector in a unit basis vector and returns it.
// the One is on position 'pos'
Vector.prototype.createUnitBasis = function (pos) {
if (pos >= 0 && pos < this.components.length) {
for (var i = 0; i < this.components.length; i++) {
if (i == pos) {
this.components[i] = 1.0
} else {
this.components[i] = 0.0
}
}
} else {
throw 'createUnitBasis: index out of bounds'
}
return this
}
// normalizes this vector and returns it.
Vector.prototype.norm = function () {
var SIZE = this.size()
var quotient = 1.0 / this.eulideanLength()
for (var i = 0; i < SIZE; i++) {
this.components[i] = this.components[i] * quotient
}
return this
}
// returns true if the vectors are equal otherwise false.
Vector.prototype.equal = function (other) {
var ans = true
var SIZE = this.size()
var EPSILON = 0.001
if (SIZE == other.size()) {
for (var i = 0; i < SIZE; i++) {
if (Math.abs(this.components[i] - other.component(i)) > EPSILON) {
ans = false
}
}
} else {
ans = false
}
return ans
}
return Vector
}()) // end of class Vector
LinearAlgebra.Vector = Vector
// -------------- global functions ---------------------------------
// returns a unit basis vector of size N with a One on position 'pos'
function unitBasisVector (N, pos) {
var ans = new Vector(N)
for (var i = 0; i < N; i++) {
if (i == pos) {
ans.changeComponent(i, 1.0)
} else {
ans.changeComponent(i, 0)
}
}
return ans
}
LinearAlgebra.unitBasisVector = unitBasisVector
// returns a random vector with integer components (between 'a' and 'b') of size N.
function randomVectorInt (N, a, b) {
var ans = new Vector(N)
for (var i = 0; i < N; i++) {
ans.changeComponent(i, (Math.floor((Math.random() * b) + a)))
}
return ans
}
LinearAlgebra.randomVectorInt = randomVectorInt
// returns a random vector with floating point components (between 'a' and 'b') of size N.
function randomVectorFloat (N, a, b) {
var ans = new Vector(N)
for (var i = 0; i < N; i++) {
ans.changeComponent(i, ((Math.random() * b) + a))
}
return ans
}
LinearAlgebra.randomVectorFloat = randomVectorFloat
// ------------------ end of global functions -----------------------------
/*
class: Matrix
This class represents a matrix of arbitrary size and operations on it.
*/
var Matrix = /** @class */ (function () {
// constructor for zero-matrix or fix number matrix.
function Matrix(row, col, comps) {
if (comps === void 0) { comps = []; }
if (comps.length == 0) {
this.matrix = new Array();
var rowVector = new Array();
for (var i = 0; i < row; i++) {
for (var j = 0; j < col; j++) {
rowVector[j] = 0;
}
this.matrix[i] = rowVector;
rowVector = new Array();
}
}
else {
this.matrix = comps;
}
this.rows = row;
this.cols = col;
var Matrix = /** @class */ (function () {
// constructor for zero-matrix or fix number matrix.
function Matrix (row, col, comps) {
if (comps === void 0) { comps = [] }
if (comps.length == 0) {
this.matrix = new Array()
var rowVector = new Array()
for (var i = 0; i < row; i++) {
for (var j = 0; j < col; j++) {
rowVector[j] = 0
}
this.matrix[i] = rowVector
rowVector = new Array()
}
// returns the specified component.
Matrix.prototype.component = function (x, y) {
if (x >= 0 && x < this.rows && y >= 0 && y < this.cols) {
return this.matrix[x][y];
} else {
this.matrix = comps
}
this.rows = row
this.cols = col
}
// returns the specified component.
Matrix.prototype.component = function (x, y) {
if (x >= 0 && x < this.rows && y >= 0 && y < this.cols) {
return this.matrix[x][y]
} else {
throw new Error('component: index out of bounds')
}
}
// changes the specified component with value 'value'.
Matrix.prototype.changeComponent = function (x, y, value) {
if (x >= 0 && x < this.rows && y >= 0 && y < this.cols) {
this.matrix[x][y] = value
} else {
throw new Error('changeComponent: index out of bounds')
}
}
// returns a string representation of this matrix.
Matrix.prototype.toString = function () {
var ans = ''
for (var i = 0; i < this.rows; i++) {
ans += '|'
for (var j = 0; j < this.cols; j++) {
if (j < this.cols - 1) {
ans += this.matrix[i][j] + ','
} else {
if (i < this.rows - 1) {
ans += this.matrix[i][j] + '|\n'
} else {
ans += this.matrix[i][j] + '|'
}
else {
throw new Error("component: index out of bounds");
}
}
}
return ans
}
// returns the dimension rows x cols as number array
Matrix.prototype.dimension = function () {
var ans = new Array()
ans[0] = this.rows
ans[1] = this.cols
return ans
}
// matrix addition. returns the result.
Matrix.prototype.add = function (other) {
if (this.rows == other.dimension()[0] &&
this.cols == other.dimension()[1]) {
var ans = new Matrix(this.rows, this.cols)
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.cols; j++) {
ans.changeComponent(i, j, (this.matrix[i][j] + other.component(i, j)))
}
}
return ans
} else {
throw new Error('add: matrices must have same dimension!')
}
}
// returns true if the matrices are equal, otherwise false.
Matrix.prototype.equal = function (other) {
var ans = true
var EPSILON = 0.001
if (this.rows == other.dimension()[0] &&
this.cols == other.dimension()[1]) {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.cols; j++) {
if (Math.abs(this.matrix[i][j] - other.component(i, j)) > EPSILON) {
ans = false
}
};
// changes the specified component with value 'value'.
Matrix.prototype.changeComponent = function (x, y, value) {
if (x >= 0 && x < this.rows && y >= 0 && y < this.cols) {
this.matrix[x][y] = value;
}
else {
throw new Error("changeComponent: index out of bounds");
}
};
// returns a string representation of this matrix.
Matrix.prototype.toString = function () {
var ans = "";
for (var i = 0; i < this.rows; i++) {
ans += "|";
for (var j = 0; j < this.cols; j++) {
if (j < this.cols - 1) {
ans += this.matrix[i][j] + ",";
}
else {
if (i < this.rows - 1) {
ans += this.matrix[i][j] + "|\n";
}
else {
ans += this.matrix[i][j] + "|";
}
}
}
}
return ans;
};
// returns the dimension rows x cols as number array
Matrix.prototype.dimension = function () {
var ans = new Array();
ans[0] = this.rows;
ans[1] = this.cols;
return ans;
};
// matrix addition. returns the result.
Matrix.prototype.add = function (other) {
if (this.rows == other.dimension()[0]
&& this.cols == other.dimension()[1]) {
var ans = new Matrix(this.rows, this.cols);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.cols; j++) {
ans.changeComponent(i, j, (this.matrix[i][j] + other.component(i, j)));
}
}
return ans;
}
else {
throw new Error("add: matrices must have same dimension!");
}
};
// returns true if the matrices are equal, otherwise false.
Matrix.prototype.equal = function (other) {
var ans = true;
var EPSILON = 0.001;
if (this.rows == other.dimension()[0]
&& this.cols == other.dimension()[1]) {
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.cols; j++) {
if (Math.abs(this.matrix[i][j] - other.component(i, j)) > EPSILON) {
ans = false;
}
}
}
}
else {
ans = false;
}
return ans;
};
// matrix-scalar multiplication
Matrix.prototype.scalar = function (c) {
var ans = new Matrix(this.rows, this.cols);
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.cols; j++) {
ans.changeComponent(i, j, (this.matrix[i][j] * c));
}
}
return ans;
};
return Matrix;
}()); // end of class Matrix
LinearAlgebra.Matrix = Matrix;
})(LinearAlgebra || (LinearAlgebra = {})); // end of namespace LinearAlgebra
}
}
} else {
ans = false
}
return ans
}
// matrix-scalar multiplication
Matrix.prototype.scalar = function (c) {
var ans = new Matrix(this.rows, this.cols)
for (var i = 0; i < this.rows; i++) {
for (var j = 0; j < this.cols; j++) {
ans.changeComponent(i, j, (this.matrix[i][j] * c))
}
}
return ans
}
return Matrix
}()) // end of class Matrix
LinearAlgebra.Matrix = Matrix
})(LinearAlgebra || (LinearAlgebra = {})) // end of namespace LinearAlgebra

View File

@ -6,165 +6,164 @@
The tests use javascript test-framework mocha
*/
var assert = require('assert');
var fs = require('fs');
var assert = require('assert')
var fs = require('fs')
// file is included here
eval(fs.readFileSync('src/la_lib.js') + '');
eval(fs.readFileSync('src/la_lib.js') + '')
// Tests goes here
// creating some vectors
describe('Create Vectors', function () {
describe('#toString()', function () {
it('should return a string representation', function () {
assert.equal((new LinearAlgebra.Vector(3, [1, 2, 3])).toString(), "(1,2,3)");
});
});
describe("#unitBasisVector()", function () {
it("should return a unit basis vector", function () {
assert.equal(LinearAlgebra.unitBasisVector(3, 1).toString(), "(0,1,0)");
});
});
});
describe('#toString()', function () {
it('should return a string representation', function () {
assert.equal((new LinearAlgebra.Vector(3, [1, 2, 3])).toString(), '(1,2,3)')
})
})
describe('#unitBasisVector()', function () {
it('should return a unit basis vector', function () {
assert.equal(LinearAlgebra.unitBasisVector(3, 1).toString(), '(0,1,0)')
})
})
})
// operations on it.
describe("Vector operations", function () {
describe("#add()", function () {
it("should return vector (2,4,6)", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3]);
var y = new LinearAlgebra.Vector(3, [1, 2, 3]);
assert.equal((x.add(y)).toString(), "(2,4,6)");
});
});
describe("#sub()", function () {
it("should return vector (0,0,0)", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3]);
var y = new LinearAlgebra.Vector(3, [1, 2, 3]);
assert.equal((x.sub(y)).toString(), "(0,0,0)");
});
});
describe("#dot()", function () {
it("should return the dot-product", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3]);
var y = new LinearAlgebra.Vector(3, [5, 6, 7]);
assert.equal(x.dot(y), 38);
});
});
describe("#scalar()", function () {
it("should return the scalar product", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3]);
assert.equal(x.scalar(2).toString(), "(2,4,6)");
});
});
describe("#norm()", function () {
it("should return the normalizes vector", function () {
var x = new LinearAlgebra.Vector(4, [9, 0, 3, 1]);
var y = x.norm();
assert.ok(Math.abs(y.component(0) - (9.0 / Math.sqrt(91))) <= 0.01);
});
});
describe("#eulideanLength()", function () {
it("should return the eulidean length of the vector", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2]);
assert.ok(Math.abs(x.eulideanLength() - 3) <= 0.001);
});
});
describe("#size()", function () {
it("should return the size (not eulidean length!) of the vector", function () {
var x = LinearAlgebra.randomVectorInt(10, 1, 5);
assert.equal(x.size(), 10);
});
});
describe("#equal()", function () {
it("should compares two vectors", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2]);
var y = new LinearAlgebra.Vector(3, [1, 2, 3]);
assert.ok(x.equal(x));
assert.ok(!x.equal(y));
});
});
});
describe("Methods on vectors", function () {
describe("#component()", function () {
it("should return the specified component", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2]);
assert.equal(x.component(1), 2);
});
});
describe("#changeComponent()", function () {
it("should return the changed vector", function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2]);
x.changeComponent(1, 5);
assert.equal(x.toString(), "(1,5,2)");
});
});
describe("#toString()", function () {
it("should return a string representation of the vector", function () {
var x = new LinearAlgebra.Vector(4, [9, 0, 3, 1]);
assert.equal(x.toString(), "(9,0,3,1)");
});
});
});
describe("class Matrix", function () {
describe("#component()", function () {
it("should return the specified component", function () {
var A = new LinearAlgebra.Matrix(2, 2);
assert.equal(A.component(0, 1), 0);
var B = new LinearAlgebra.Matrix(2, 2, [[1, 2], [3, 4]]);
assert.equal(B.component(1, 0), 3);
});
});
describe("#toString()", function () {
it("should return a string representation of the matrix", function () {
var A = new LinearAlgebra.Matrix(2, 2, [[1, 2], [3, 4]]);
assert.equal(A.toString(), "|1,2|\n|3,4|");
});
});
describe("#dimension()", function () {
it("should return the dimension of the matrix as number array", function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]]);
assert.equal(A.dimension()[0], 3);
assert.equal(A.dimension()[1], 2);
});
});
describe("#changeComponent()", function () {
it("should change the specified component of the matrix", function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]]);
A.changeComponent(1, 0, 5);
assert.equal(A.component(1, 0), 5);
});
});
describe("#equal()", function () {
it("should compares the matrices", function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]]);
var B = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]]);
var C = new LinearAlgebra.Matrix(2, 2, [[1, 2], [3, 4]]);
var D = new LinearAlgebra.Matrix(2, 2, [[1, 2], [5, 4]]);
assert.ok(A.equal(B));
assert.ok(!A.equal(C));
assert.ok(!C.equal(D));
});
});
describe("#add()", function () {
it("should return the result of the matrix addition", function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]]);
var B = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]]);
var C = A.add(B);
assert.equal(C.component(1, 0), 6);
assert.equal(C.component(1, 1), 8);
assert.equal(C.component(0, 0), 2);
});
});
describe("#scalar()", function () {
it("should return the result of the matrix-scalar multiplication", function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]]);
var B = A.scalar(2);
var C = new LinearAlgebra.Matrix(3, 2, [[2, 4], [6, 8], [10, 12]]);
assert.ok(B.equal(C));
});
describe('Vector operations', function () {
describe('#add()', function () {
it('should return vector (2,4,6)', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3])
var y = new LinearAlgebra.Vector(3, [1, 2, 3])
assert.equal((x.add(y)).toString(), '(2,4,6)')
})
});
})
describe('#sub()', function () {
it('should return vector (0,0,0)', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3])
var y = new LinearAlgebra.Vector(3, [1, 2, 3])
assert.equal((x.sub(y)).toString(), '(0,0,0)')
})
})
describe('#dot()', function () {
it('should return the dot-product', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3])
var y = new LinearAlgebra.Vector(3, [5, 6, 7])
assert.equal(x.dot(y), 38)
})
})
describe('#scalar()', function () {
it('should return the scalar product', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 3])
assert.equal(x.scalar(2).toString(), '(2,4,6)')
})
})
describe('#norm()', function () {
it('should return the normalizes vector', function () {
var x = new LinearAlgebra.Vector(4, [9, 0, 3, 1])
var y = x.norm()
assert.ok(Math.abs(y.component(0) - (9.0 / Math.sqrt(91))) <= 0.01)
})
})
describe('#eulideanLength()', function () {
it('should return the eulidean length of the vector', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2])
assert.ok(Math.abs(x.eulideanLength() - 3) <= 0.001)
})
})
describe('#size()', function () {
it('should return the size (not eulidean length!) of the vector', function () {
var x = LinearAlgebra.randomVectorInt(10, 1, 5)
assert.equal(x.size(), 10)
})
})
describe('#equal()', function () {
it('should compares two vectors', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2])
var y = new LinearAlgebra.Vector(3, [1, 2, 3])
assert.ok(x.equal(x))
assert.ok(!x.equal(y))
})
})
})
describe('Methods on vectors', function () {
describe('#component()', function () {
it('should return the specified component', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2])
assert.equal(x.component(1), 2)
})
})
describe('#changeComponent()', function () {
it('should return the changed vector', function () {
var x = new LinearAlgebra.Vector(3, [1, 2, 2])
x.changeComponent(1, 5)
assert.equal(x.toString(), '(1,5,2)')
})
})
describe('#toString()', function () {
it('should return a string representation of the vector', function () {
var x = new LinearAlgebra.Vector(4, [9, 0, 3, 1])
assert.equal(x.toString(), '(9,0,3,1)')
})
})
})
describe('class Matrix', function () {
describe('#component()', function () {
it('should return the specified component', function () {
var A = new LinearAlgebra.Matrix(2, 2)
assert.equal(A.component(0, 1), 0)
var B = new LinearAlgebra.Matrix(2, 2, [[1, 2], [3, 4]])
assert.equal(B.component(1, 0), 3)
})
})
describe('#toString()', function () {
it('should return a string representation of the matrix', function () {
var A = new LinearAlgebra.Matrix(2, 2, [[1, 2], [3, 4]])
assert.equal(A.toString(), '|1,2|\n|3,4|')
})
})
describe('#dimension()', function () {
it('should return the dimension of the matrix as number array', function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]])
assert.equal(A.dimension()[0], 3)
assert.equal(A.dimension()[1], 2)
})
})
describe('#changeComponent()', function () {
it('should change the specified component of the matrix', function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]])
A.changeComponent(1, 0, 5)
assert.equal(A.component(1, 0), 5)
})
})
describe('#equal()', function () {
it('should compares the matrices', function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]])
var B = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]])
var C = new LinearAlgebra.Matrix(2, 2, [[1, 2], [3, 4]])
var D = new LinearAlgebra.Matrix(2, 2, [[1, 2], [5, 4]])
assert.ok(A.equal(B))
assert.ok(!A.equal(C))
assert.ok(!C.equal(D))
})
})
describe('#add()', function () {
it('should return the result of the matrix addition', function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]])
var B = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]])
var C = A.add(B)
assert.equal(C.component(1, 0), 6)
assert.equal(C.component(1, 1), 8)
assert.equal(C.component(0, 0), 2)
})
})
describe('#scalar()', function () {
it('should return the result of the matrix-scalar multiplication', function () {
var A = new LinearAlgebra.Matrix(3, 2, [[1, 2], [3, 4], [5, 6]])
var B = A.scalar(2)
var C = new LinearAlgebra.Matrix(3, 2, [[2, 4], [6, 8], [10, 12]])
assert.ok(B.equal(C))
})
})
})

View File

@ -1,71 +1,66 @@
// starting at s
function solve(graph, s) {
var solutions = {};
solutions[s] = [];
solutions[s].dist = 0;
while(true) {
var p = null;
var neighbor = null;
var dist = Infinity;
for(var n in solutions) {
if(!solutions[n])
continue
var ndist = solutions[n].dist;
var adj = graph[n];
for(var a in adj) {
function solve (graph, s) {
var solutions = {}
solutions[s] = []
solutions[s].dist = 0
if(solutions[a])
continue;
var d = adj[a] + ndist;
if(d < dist) {
p = solutions[n];
neighbor = a;
dist = d;
while (true) {
var p = null
var neighbor = null
var dist = Infinity
for (var n in solutions) {
if (!solutions[n]) { continue }
var ndist = solutions[n].dist
var adj = graph[n]
for (var a in adj) {
if (solutions[a]) { continue }
var d = adj[a] + ndist
if (d < dist) {
p = solutions[n]
neighbor = a
dist = d
}
}
}
//no more solutions
if(dist === Infinity) {
break;
// no more solutions
if (dist === Infinity) {
break
}
//extend parent's solution path
solutions[neighbor] = p.concat(neighbor);
//extend parent's cost
solutions[neighbor].dist = dist;
// extend parent's solution path
solutions[neighbor] = p.concat(neighbor)
// extend parent's cost
solutions[neighbor].dist = dist
}
return solutions;
return solutions
}
//create graph
var graph = {};
// create graph
var graph = {}
var layout = {
'R': ['2'],
'2': ['3','4'],
'3': ['4','6','13'],
'4': ['5','8'],
'5': ['7','11'],
'6': ['13','15'],
'7': ['10'],
'8': ['11','13'],
'9': ['14'],
'10': [],
'11': ['12'],
'12': [],
'13': ['14'],
'14': [],
'15': []
R: ['2'],
2: ['3', '4'],
3: ['4', '6', '13'],
4: ['5', '8'],
5: ['7', '11'],
6: ['13', '15'],
7: ['10'],
8: ['11', '13'],
9: ['14'],
10: [],
11: ['12'],
12: [],
13: ['14'],
14: [],
15: []
}
//convert uni-directional to bi-directional graph
// convert uni-directional to bi-directional graph
// var graph = {
// a: {e:1, b:1, g:3},
// b: {a:1, c:1},
@ -77,27 +72,25 @@ var layout = {
// h: {f:1}
// };
for(var id in layout) {
if(!graph[id])
graph[id] = {};
layout[id].forEach(function(aid) {
graph[id][aid] = 1;
if(!graph[aid])
graph[aid] = {};
graph[aid][id] = 1;
});
for (var id in layout) {
if (!graph[id]) { graph[id] = {} }
layout[id].forEach(function (aid) {
graph[id][aid] = 1
if (!graph[aid]) { graph[aid] = {} }
graph[aid][id] = 1
})
}
//choose start node
var start = '10';
//get all solutions
var solutions = solve(graph, start);
// choose start node
var start = '10'
// get all solutions
var solutions = solve(graph, start)
console.log("From '"+start+"' to");
//display solutions
for(var s in solutions) {
if(!solutions[s]) continue;
console.log(" -> " + s + ": [" + solutions[s].join(", ") + "] (dist:" + solutions[s].dist + ")");
console.log("From '" + start + "' to")
// display solutions
for (var s in solutions) {
if (!solutions[s]) continue
console.log(' -> ' + s + ': [' + solutions[s].join(', ') + '] (dist:' + solutions[s].dist + ')')
}
// From '10' to

View File

@ -11,16 +11,16 @@
https://en.wikipedia.org/wiki/Absolute_value
*/
function abs_val(num) {
// Find absolute value of `num`.
"use strict";
if (num < 0) {
return -num
}
// Executes if condition is not met.
return num
function abs_val (num) {
// Find absolute value of `num`.
'use strict'
if (num < 0) {
return -num
}
// Executes if condition is not met.
return num
}
// Run `abs` function to find absolute value of two numbers.
console.log("The absolute value of -34 is " + abs_val(-34));
console.log("The absolute value of 34 is " + abs_val(34));
console.log('The absolute value of -34 is ' + abs_val(-34))
console.log('The absolute value of 34 is ' + abs_val(34))

View File

@ -11,20 +11,20 @@
https://en.wikipedia.org/wiki/Mean
*/
function mean(nums) {
"use strict";
var sum = 0;
var avg;
function mean (nums) {
'use strict'
var sum = 0
var avg
// This loop sums all values in the 'nums' array.
nums.forEach(function (current) {
sum += current;
});
// This loop sums all values in the 'nums' array.
nums.forEach(function (current) {
sum += current
})
// Divide sum by the length of the 'nums' array.
avg = sum / nums.length;
return avg;
// Divide sum by the length of the 'nums' array.
avg = sum / nums.length
return avg
}
// Run `mean` Function to find average of a list of numbers.
console.log(mean([2, 4, 6, 8, 20, 50, 70]));
console.log(mean([2, 4, 6, 8, 20, 50, 70]))

View File

@ -11,42 +11,42 @@
https://en.wikipedia.org/wiki/factorial
*/
"use strict";
'use strict'
function calc_range(num) {
// Generate a range of numbers from 1 to `num`.
var i = 1;
var range = [];
while (i <= num) {
range.push(i);
i += 1;
}
return range;
function calc_range (num) {
// Generate a range of numbers from 1 to `num`.
var i = 1
var range = []
while (i <= num) {
range.push(i)
i += 1
}
return range
}
function calc_factorial(num) {
var factorial;
var range = calc_range(num);
function calc_factorial (num) {
var factorial
var range = calc_range(num)
// Check if the number is negative, positive, null, undefined, or zero
if (num < 0) {
return "Sorry, factorial does not exist for negative numbers.";
}
if (num === null || num === undefined) {
return "Sorry, factorial does not exist for null or undefined numbers.";
}
if (num === 0) {
return "The factorial of 0 is 1.";
}
if (num > 0) {
factorial = 1;
range.forEach(function (i) {
factorial = factorial * i;
});
return "The factorial of " + num + " is " + factorial;
}
// Check if the number is negative, positive, null, undefined, or zero
if (num < 0) {
return 'Sorry, factorial does not exist for negative numbers.'
}
if (num === null || num === undefined) {
return 'Sorry, factorial does not exist for null or undefined numbers.'
}
if (num === 0) {
return 'The factorial of 0 is 1.'
}
if (num > 0) {
factorial = 1
range.forEach(function (i) {
factorial = factorial * i
})
return 'The factorial of ' + num + ' is ' + factorial
}
}
// Run `factorial` Function to find average of a list of numbers.
var num = prompt("Enter a number: ");
alert(calc_factorial(num));
var num = prompt('Enter a number: ')
alert(calc_factorial(num))

View File

@ -9,30 +9,30 @@
https://en.wikipedia.org/wiki/Least_common_multiple
*/
"use strict";
'use strict'
// Find the LCM of two numbers.
function find_lcm(num_1, num_2) {
var max_num;
var lcm;
// Check to see whether num_1 or num_2 is larger.
if (num_1 > num_2) {
max_num = num_1;
} else {
max_num = num_2;
}
lcm = max_num;
function find_lcm (num_1, num_2) {
var max_num
var lcm
// Check to see whether num_1 or num_2 is larger.
if (num_1 > num_2) {
max_num = num_1
} else {
max_num = num_2
}
lcm = max_num
while (true) {
if ((lcm % num_1 === 0) && (lcm % num_2 === 0)) {
break;
}
lcm += max_num;
while (true) {
if ((lcm % num_1 === 0) && (lcm % num_2 === 0)) {
break
}
return lcm;
lcm += max_num
}
return lcm
}
// Run `find_lcm` Function
var num_1 = 12;
var num_2 = 76;
console.log(find_lcm(num_1, num_2));
var num_1 = 12
var num_2 = 76
console.log(find_lcm(num_1, num_2))

View File

@ -1,94 +1,89 @@
// create a graph class
class Graph {
// defining vertex array and
// adjacent list
constructor(noOfVertices)
{
this.noOfVertices = noOfVertices;
this.AdjList = new Map();
}
// functions to be implemented
// addVertex(v)
// addEdge(v, w)
// printGraph()
// bfs(v)
// dfs(v)
// create a graph class
class Graph {
// defining vertex array and
// adjacent list
constructor (noOfVertices) {
this.noOfVertices = noOfVertices
this.AdjList = new Map()
}
// functions to be implemented
// addVertex(v)
// addEdge(v, w)
// printGraph()
// bfs(v)
// dfs(v)
}
// add vertex to the graph
addVertex(v)
{
// initialize the adjacent list with a
// null array
this.AdjList.set(v, []);
// add vertex to the graph
addVertex(v)
{
// initialize the adjacent list with a
// null array
this.AdjList.set(v, [])
}
// add edge to the graph
addEdge(v, w)
{
// get the list for vertex v and put the
// vertex w denoting edge between v and w
this.AdjList.get(v).push(w);
// Since graph is undirected,
// add an edge from w to v also
this.AdjList.get(w).push(v);
}
// add edge to the graph
addEdge(v, w)
{
// get the list for vertex v and put the
// vertex w denoting edge between v and w
this.AdjList.get(v).push(w)
// Prints the vertex and adjacency list
printGraph()
{
// get all the vertices
var get_keys = this.AdjList.keys();
// iterate over the vertices
for (var i of get_keys)
{
// great the corresponding adjacency list
// for the vertex
var get_values = this.AdjList.get(i);
var conc = "";
// iterate over the adjacency list
// concatenate the values into a string
for (var j of get_values)
conc += j + " ";
// print the vertex and its adjacency list
console.log(i + " -> " + conc);
}
// Since graph is undirected,
// add an edge from w to v also
this.AdjList.get(w).push(v)
}
// Prints the vertex and adjacency list
printGraph()
{
// get all the vertices
var get_keys = this.AdjList.keys()
// iterate over the vertices
for (var i of get_keys) {
// great the corresponding adjacency list
// for the vertex
var get_values = this.AdjList.get(i)
var conc = ''
// iterate over the adjacency list
// concatenate the values into a string
for (var j of get_values) { conc += j + ' ' }
// print the vertex and its adjacency list
console.log(i + ' -> ' + conc)
}
}
// Example
var graph = new Graph(6);
var vertices = [ 'A', 'B', 'C', 'D', 'E', 'F' ];
// adding vertices
for (var i = 0; i < vertices.length; i++) {
g.addVertex(vertices[i]);
}
// adding edges
g.addEdge('A', 'B');
g.addEdge('A', 'D');
g.addEdge('A', 'E');
g.addEdge('B', 'C');
g.addEdge('D', 'E');
g.addEdge('E', 'F');
g.addEdge('E', 'C');
g.addEdge('C', 'F');
// prints all vertex and
// its adjacency list
// A -> B D E
// B -> A C
// C -> B E F
// D -> A E
// E -> A D F C
// F -> E C
g.printGraph();
var graph = new Graph(6)
var vertices = ['A', 'B', 'C', 'D', 'E', 'F']
// adding vertices
for (var i = 0; i < vertices.length; i++) {
g.addVertex(vertices[i])
}
// adding edges
g.addEdge('A', 'B')
g.addEdge('A', 'D')
g.addEdge('A', 'E')
g.addEdge('B', 'C')
g.addEdge('D', 'E')
g.addEdge('E', 'F')
g.addEdge('E', 'C')
g.addEdge('C', 'F')
// prints all vertex and
// its adjacency list
// A -> B D E
// B -> A C
// C -> B E F
// D -> A E
// E -> A D F C
// F -> E C
g.printGraph()