mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 00:01:37 +08:00
Javascript/Math: editing file name
This commit is contained in:
125
Data-Structures/Heap/MinPriorityQueue.js
Normal file
125
Data-Structures/Heap/MinPriorityQueue.js
Normal file
@ -0,0 +1,125 @@
|
||||
|
||||
/* Minimum Priority Queue
|
||||
* It is a part of heap data structure
|
||||
* A heap is a specific tree based data structure
|
||||
* in which all the nodes of tree are in a specific order.
|
||||
* that is the children are arranged in some
|
||||
* respect of their parents, can either be greater
|
||||
* or less than the parent. This makes it a min priority queue
|
||||
* or max priority queue.
|
||||
*/
|
||||
|
||||
// Functions: insert, delete, peek, isEmpty, print, heapSort, sink
|
||||
|
||||
class MinPriorityQueue {
|
||||
// calls the constructor and initializes the capacity
|
||||
constructor (c) {
|
||||
this.heap = []
|
||||
this.capacity = c
|
||||
this.size = 0
|
||||
}
|
||||
|
||||
// inserts the key at the end and rearranges it
|
||||
// so that the binary heap is in appropriate order
|
||||
insert (key) {
|
||||
if (this.isFull()) return
|
||||
this.heap[this.size + 1] = key
|
||||
let k = this.size + 1
|
||||
while (k > 1) {
|
||||
if (this.heap[k] < this.heap[Math.floor(k / 2)]) {
|
||||
const temp = this.heap[k]
|
||||
this.heap[k] = this.heap[Math.floor(k / 2)]
|
||||
this.heap[Math.floor(k / 2)] = temp
|
||||
}
|
||||
k = Math.floor(k / 2)
|
||||
}
|
||||
this.size++
|
||||
}
|
||||
|
||||
// returns the highest priority value
|
||||
peek () {
|
||||
return this.heap[1]
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is empty or not
|
||||
isEmpty () {
|
||||
return this.size === 0
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is full or not
|
||||
isFull () {
|
||||
if (this.size === this.capacity) return true
|
||||
return false
|
||||
}
|
||||
|
||||
// prints the heap
|
||||
print () {
|
||||
console.log(this.heap.slice(1))
|
||||
}
|
||||
|
||||
// heap sorting can be done by performing
|
||||
// delete function to the number of times of the size of the heap
|
||||
// it returns reverse sort because it is a min priority queue
|
||||
heapSort () {
|
||||
for (let i = 1; i < this.capacity; i++) {
|
||||
this.delete()
|
||||
}
|
||||
}
|
||||
|
||||
// this function reorders the heap after every delete function
|
||||
sink () {
|
||||
let k = 1
|
||||
while (2 * k <= this.size || 2 * k + 1 <= this.size) {
|
||||
let minIndex
|
||||
if (this.heap[2 * k] >= this.heap[k]) {
|
||||
if (2 * k + 1 <= this.size && this.heap[2 * k + 1] >= this.heap[k]) {
|
||||
break
|
||||
} else if (2 * k + 1 > this.size) {
|
||||
break
|
||||
}
|
||||
}
|
||||
if (2 * k + 1 > this.size) {
|
||||
minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k
|
||||
} else {
|
||||
if (
|
||||
this.heap[k] > this.heap[2 * k] ||
|
||||
this.heap[k] > this.heap[2 * k + 1]
|
||||
) {
|
||||
minIndex =
|
||||
this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1
|
||||
} else {
|
||||
minIndex = k
|
||||
}
|
||||
}
|
||||
const temp = this.heap[k]
|
||||
this.heap[k] = this.heap[minIndex]
|
||||
this.heap[minIndex] = temp
|
||||
k = minIndex
|
||||
}
|
||||
}
|
||||
|
||||
// deletes the highest priority value from the heap
|
||||
delete () {
|
||||
const min = this.heap[1]
|
||||
this.heap[1] = this.heap[this.size]
|
||||
this.heap[this.size] = min
|
||||
this.size--
|
||||
this.sink()
|
||||
return min
|
||||
}
|
||||
}
|
||||
|
||||
// testing
|
||||
const q = new MinPriorityQueue(8)
|
||||
|
||||
q.insert(5)
|
||||
q.insert(2)
|
||||
q.insert(4)
|
||||
q.insert(1)
|
||||
q.insert(7)
|
||||
q.insert(6)
|
||||
q.insert(3)
|
||||
q.insert(8)
|
||||
q.print() // [ 1, 2, 3, 5, 7, 6, 4, 8 ]
|
||||
q.heapSort()
|
||||
q.print() // [ 8, 7, 6, 5, 4, 3, 2, 1 ]
|
Reference in New Issue
Block a user