Javascript/Math: editing file name

This commit is contained in:
itsvinayak
2020-05-06 18:30:19 +05:30
parent ba75297f72
commit 75f6888019
24 changed files with 0 additions and 0 deletions

View File

@ -0,0 +1,44 @@
class Graph {
constructor () {
this.adjacencyMap = {}
}
addVertex (v) {
this.adjacencyMap[v] = []
}
containsVertex (vertex) {
return typeof (this.adjacencyMap[vertex]) !== 'undefined'
}
addEdge (v, w) {
let result = false
if (this.containsVertex(v) && this.containsVertex(w)) {
this.adjacencyMap[v].push(w)
this.adjacencyMap[w].push(v)
result = true
}
return result
}
printGraph () {
const keys = Object.keys(this.adjacencyMap)
for (const i of keys) {
const values = this.adjacencyMap[i]
let vertex = ''
for (const j of values) { vertex += j + ' ' }
console.log(i + ' -> ' + vertex)
}
}
}
const example = () => {
const g = new Graph()
g.addVertex(1)
g.addVertex(2)
g.addVertex(3)
g.addEdge(1, 2)
g.addEdge(1, 3)
g.printGraph()
}
example()

View File

@ -0,0 +1,125 @@
/* Minimum Priority Queue
* It is a part of heap data structure
* A heap is a specific tree based data structure
* in which all the nodes of tree are in a specific order.
* that is the children are arranged in some
* respect of their parents, can either be greater
* or less than the parent. This makes it a min priority queue
* or max priority queue.
*/
// Functions: insert, delete, peek, isEmpty, print, heapSort, sink
class MinPriorityQueue {
// calls the constructor and initializes the capacity
constructor (c) {
this.heap = []
this.capacity = c
this.size = 0
}
// inserts the key at the end and rearranges it
// so that the binary heap is in appropriate order
insert (key) {
if (this.isFull()) return
this.heap[this.size + 1] = key
let k = this.size + 1
while (k > 1) {
if (this.heap[k] < this.heap[Math.floor(k / 2)]) {
const temp = this.heap[k]
this.heap[k] = this.heap[Math.floor(k / 2)]
this.heap[Math.floor(k / 2)] = temp
}
k = Math.floor(k / 2)
}
this.size++
}
// returns the highest priority value
peek () {
return this.heap[1]
}
// returns boolean value whether the heap is empty or not
isEmpty () {
return this.size === 0
}
// returns boolean value whether the heap is full or not
isFull () {
if (this.size === this.capacity) return true
return false
}
// prints the heap
print () {
console.log(this.heap.slice(1))
}
// heap sorting can be done by performing
// delete function to the number of times of the size of the heap
// it returns reverse sort because it is a min priority queue
heapSort () {
for (let i = 1; i < this.capacity; i++) {
this.delete()
}
}
// this function reorders the heap after every delete function
sink () {
let k = 1
while (2 * k <= this.size || 2 * k + 1 <= this.size) {
let minIndex
if (this.heap[2 * k] >= this.heap[k]) {
if (2 * k + 1 <= this.size && this.heap[2 * k + 1] >= this.heap[k]) {
break
} else if (2 * k + 1 > this.size) {
break
}
}
if (2 * k + 1 > this.size) {
minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k
} else {
if (
this.heap[k] > this.heap[2 * k] ||
this.heap[k] > this.heap[2 * k + 1]
) {
minIndex =
this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1
} else {
minIndex = k
}
}
const temp = this.heap[k]
this.heap[k] = this.heap[minIndex]
this.heap[minIndex] = temp
k = minIndex
}
}
// deletes the highest priority value from the heap
delete () {
const min = this.heap[1]
this.heap[1] = this.heap[this.size]
this.heap[this.size] = min
this.size--
this.sink()
return min
}
}
// testing
const q = new MinPriorityQueue(8)
q.insert(5)
q.insert(2)
q.insert(4)
q.insert(1)
q.insert(7)
q.insert(6)
q.insert(3)
q.insert(8)
q.print() // [ 1, 2, 3, 5, 7, 6, 4, 8 ]
q.heapSort()
q.print() // [ 8, 7, 6, 5, 4, 3, 2, 1 ]

View File

@ -0,0 +1,202 @@
// Hamza chabchoub contribution for a university project
function DoubleLinkedList () {
const Node = function (element) {
this.element = element
this.next = null
this.prev = null
}
let length = 0
let head = null
let tail = null
// Add new element
this.append = function (element) {
const node = new Node(element)
if (!head) {
head = node
tail = node
} else {
node.prev = tail
tail.next = node
tail = node
}
length++
}
// Add element
this.insert = function (position, element) {
// Check of out-of-bound values
if (position >= 0 && position <= length) {
const node = new Node(element)
let current = head
let previous = 0
let index = 0
if (position === 0) {
if (!head) {
head = node
tail = node
} else {
node.next = current
current.prev = node
head = node
}
} else if (position === length) {
current = tail
current.next = node
node.prev = current
tail = node
} else {
while (index++ < position) {
previous = current
current = current.next
}
node.next = current
previous.next = node
// New
current.prev = node
node.prev = previous
}
length++
return true
} else {
return false
}
}
// Remove element at any position
this.removeAt = function (position) {
// look for out-of-bounds value
if (position > -1 && position < length) {
let current = head
let previous = 0
let index = 0
// Removing first item
if (position === 0) {
head = current.next
// if there is only one item, update tail //NEW
if (length === 1) {
tail = null
} else {
head.prev = null
}
} else if (position === length - 1) {
current = tail
tail = current.prev
tail.next = null
} else {
while (index++ < position) {
previous = current
current = current.next
}
// link previous with current's next - skip it
previous.next = current.next
current.next.prev = previous
}
length--
return current.element
} else {
return null
}
}
// Get the indexOf item
this.indexOf = function (elm) {
let current = head
let index = -1
// If element found then return its position
while (current) {
if (elm === current.element) {
return ++index
}
index++
current = current.next
}
// Else return -1
return -1
}
// Find the item in the list
this.isPresent = (elm) => {
return this.indexOf(elm) !== -1
}
// Delete an item from the list
this.delete = (elm) => {
return this.removeAt(this.indexOf(elm))
}
// Delete first item from the list
this.deleteHead = function () {
this.removeAt(0)
}
// Delete last item from the list
this.deleteTail = function () {
this.removeAt(length - 1)
}
// Print item of the string
this.toString = function () {
let current = head
let string = ''
while (current) {
string += current.element + (current.next ? '\n' : '')
current = current.next
}
return string
}
// Convert list to array
this.toArray = function () {
const arr = []
let current = head
while (current) {
arr.push(current.element)
current = current.next
}
return arr
}
// Check if list is empty
this.isEmpty = function () {
return length === 0
}
// Get the size of the list
this.size = function () {
return length
}
// Get the head
this.getHead = function () {
return head
}
// Get the tail
this.getTail = function () {
return tail
}
}
const newDoubleLinkedList = new DoubleLinkedList()
newDoubleLinkedList.append(1)
newDoubleLinkedList.append(2)
console.log('Testing: ' + newDoubleLinkedList.size()) // returns 2

View File

@ -0,0 +1,209 @@
/* SinglyLinkedList!!
* A linked list is implar to an array, it hold values.
* However, links in a linked list do not have indexes. With
* a linked list you do not need to predetermine it's size as
* it grows and shrinks as it is edited. This is an example of
* a singly linked list.
*/
// Functions - add, remove, indexOf, elementAt, addAt, removeAt, view
// class LinkedList and constructor
// Creates a LinkedList
var LinkedList = (function () {
function LinkedList () {
// Length of linklist and head is null at start
this.length = 0
this.head = null
}
// class node (constructor)
// Creating Node with element's value
var Node = (function () {
function Node (element) {
this.element = element
this.next = null
}
return Node
}())
// Returns length
LinkedList.prototype.size = function () {
return this.length
}
// Returns the head
LinkedList.prototype.head = function () {
return this.head
}
// Creates a node and adds it to linklist
LinkedList.prototype.add = function (element) {
var node = new Node(element)
// Check if its the first element
if (this.head === null) {
this.head = node
} else {
var currentNode = this.head
// Loop till there is node present in the list
while (currentNode.next) {
currentNode = currentNode.next
}
// Adding node to the end of the list
currentNode.next = node
}
// Increment the length
this.length++
}
// Removes the node with the value as param
LinkedList.prototype.remove = function (element) {
var currentNode = this.head
var previousNode
// Check if the head node is the element to remove
if (currentNode.element === element) {
this.head = currentNode.next
} else {
// Check which node is the node to remove
while (currentNode.element !== element) {
previousNode = currentNode
currentNode = currentNode.next
}
// Removing the currentNode
previousNode.next = currentNode.next
}
// Decrementing the length
this.length--
}
// Return if the list is empty
LinkedList.prototype.isEmpty = function () {
return this.length === 0
}
// Returns the index of the element passed as param otherwise -1
LinkedList.prototype.indexOf = function (element) {
var currentNode = this.head
var index = -1
while (currentNode) {
index++
// Checking if the node is the element we are searching for
if (currentNode.element === element) {
return index + 1
}
currentNode = currentNode.next
}
return -1
}
// Returns the element at an index
LinkedList.prototype.elementAt = function (index) {
var currentNode = this.head
var count = 0
while (count < index) {
count++
currentNode = currentNode.next
}
return currentNode.element
}
// Adds the element at specified index
LinkedList.prototype.addAt = function (index, element) {
index--
var node = new Node(element)
var currentNode = this.head
var previousNode
var currentIndex = 0
// Check if index is out of bounds of list
if (index > this.length) {
return false
}
// Check if index is the start of list
if (index === 0) {
node.next = currentNode
this.head = node
} else {
while (currentIndex < index) {
currentIndex++
previousNode = currentNode
currentNode = currentNode.next
}
// Adding the node at specified index
node.next = currentNode
previousNode.next = node
}
// Incrementing the length
this.length++
return true
}
// Removes the node at specified index
LinkedList.prototype.removeAt = function (index) {
index--
var currentNode = this.head
var previousNode
var currentIndex = 0
// Check if index is present in list
if (index < 0 || index >= this.length) {
return null
}
// Check if element is the first element
if (index === 0) {
this.head = currentNode.next
} else {
while (currentIndex < index) {
currentIndex++
previousNode = currentNode
currentNode = currentNode.next
}
previousNode.next = currentNode.next
}
// Decrementing the length
this.length--
return currentNode.element
}
// Function to view the LinkedList
LinkedList.prototype.view = function () {
var currentNode = this.head
var count = 0
while (count < this.length) {
count++
console.log(currentNode.element)
currentNode = currentNode.next
}
}
// returns the constructor
return LinkedList
}())
// Implementation of LinkedList
var linklist = new LinkedList()
linklist.add(2)
linklist.add(5)
linklist.add(8)
linklist.add(12)
linklist.add(17)
console.log(linklist.size())
console.log(linklist.removeAt(4))
linklist.addAt(4, 15)
console.log(linklist.indexOf(8))
console.log(linklist.size())
linklist.view()

View File

@ -0,0 +1,80 @@
/* Queue
* A Queue is a data structure that allows you to add an element to the end of
* a list and remove the item at the front. A queue follows a "First In First Out"
* system, where the first item to enter the queue is the first to be removed. This
* implementation uses an array to store the queue.
*/
// Functions: enqueue, dequeue, peek, view, length
var Queue = (function () {
// constructor
function Queue () {
// This is the array representation of the queue
this.queue = []
}
// methods
// Add a value to the end of the queue
Queue.prototype.enqueue = function (item) {
this.queue[this.queue.length] = item
}
// Removes the value at the front of the queue
Queue.prototype.dequeue = function () {
if (this.queue.length === 0) {
throw new Error('Queue is Empty')
}
var result = this.queue[0]
this.queue.splice(0, 1) // remove the item at position 0 from the array
return result
}
// Return the length of the queue
Queue.prototype.length = function () {
return this.queue.length
}
// Return the item at the front of the queue
Queue.prototype.peek = function () {
return this.queue[0]
}
// List all the items in the queue
Queue.prototype.view = function () {
console.log(this.queue)
}
return Queue
}())
// Implementation
var myQueue = new Queue()
myQueue.enqueue(1)
myQueue.enqueue(5)
myQueue.enqueue(76)
myQueue.enqueue(69)
myQueue.enqueue(32)
myQueue.enqueue(54)
myQueue.view()
console.log('Length: ' + myQueue.length())
console.log('Front item: ' + myQueue.peek())
console.log('Removed ' + myQueue.dequeue() + ' from front.')
console.log('New front item: ' + myQueue.peek())
console.log('Removed ' + myQueue.dequeue() + ' from front.')
console.log('New front item: ' + myQueue.peek())
myQueue.enqueue(55)
console.log('Inserted 55')
console.log('New front item: ' + myQueue.peek())
for (var i = 0; i < 5; i++) {
myQueue.dequeue()
myQueue.view()
}
// console.log(myQueue.dequeue()); // throws exception!

View File

@ -0,0 +1,64 @@
// implementation of Queue using 2 stacks
// contribution made by hamza chabchoub for a university project
class Queue {
constructor () {
this.inputStack = []
this.outputStack = []
}
// Push item into the inputstack
enqueue (item) {
this.inputStack.push(item)
}
dequeue (item) {
// push all items to outputstack
this.outputStack = []
if (this.inputStack.length > 0) {
while (this.inputStack.length > 0) {
this.outputStack.push(this.inputStack.pop())
}
}
// display the top element of the outputstack
if (this.outputStack.length > 0) {
console.log(this.outputStack.pop())
// repush all the items to the inputstack
this.inputStack = []
while (this.outputStack.length > 0) {
this.inputStack.push(this.outputStack.pop())
}
}
}
// display elements of the inputstack
listIn () {
let i = 0
while (i < this.inputStack.length) {
console.log(this.inputStack[i])
i++
}
}
// display element of the outputstack
listOut () {
let i = 0
while (i < this.outputStack.length) {
console.log(this.outputStack[i])
i++
}
}
}
// testing
const queue = new Queue()
queue.enqueue(1)
queue.enqueue(2)
queue.enqueue(8)
queue.enqueue(9)
console.log(queue.dequeue())
// ans = 1
console.log(queue.dequeue())
// ans = 2

View File

@ -0,0 +1,72 @@
/* Stack!!
* A stack is exactly what it sounds like. An element gets added to the top of
* the stack and only the element on the top may be removed. This is an example
* of an array implementation of a Stack. So an element can only be added/removed
* from the end of the array.
*/
// Functions: push, pop, peek, view, length
// Creates a stack constructor
var Stack = (function () {
function Stack () {
// The top of the Stack
this.top = 0
// The array representation of the stack
this.stack = []
}
// Adds a value onto the end of the stack
Stack.prototype.push = function (value) {
this.stack[this.top] = value
this.top++
}
// Removes and returns the value at the end of the stack
Stack.prototype.pop = function () {
if (this.top === 0) {
return 'Stack is Empty'
}
this.top--
var result = this.stack[this.top]
delete this.stack[this.top]
return result
}
// Returns the size of the stack
Stack.prototype.size = function () {
return this.top
}
// Returns the value at the end of the stack
Stack.prototype.peek = function () {
return this.stack[this.top - 1]
}
// To see all the elements in the stack
Stack.prototype.view = function () {
for (var i = 0; i < this.top; i++) { console.log(this.stack[i]) }
}
return Stack
}())
// Implementation
var myStack = new Stack()
myStack.push(1)
myStack.push(5)
myStack.push(76)
myStack.push(69)
myStack.push(32)
myStack.push(54)
console.log(myStack.size())
console.log(myStack.peek())
console.log(myStack.pop())
console.log(myStack.peek())
console.log(myStack.pop())
console.log(myStack.peek())
myStack.push(55)
console.log(myStack.peek())
myStack.view()

View File

@ -0,0 +1,114 @@
/* Binary Search Tree!!
*
* Nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
* to the right, and the parent from which they came from.
*
* A binary tree is a data structure in which an element
* has two successors(children). The left child is usually
* smaller than the parent, and the right child is usually
* bigger.
*/
// class Node
var Node = (function () {
// Node in the tree
function Node (val) {
this.value = val
this.left = null
this.right = null
}
// Search the tree for a value
Node.prototype.search = function (val) {
if (this.value === val) {
return this
} else if (val < this.value && this.left != null) {
return this.left.search(val)
} else if (val > this.value && this.right != null) {
return this.right.search(val)
}
return null
}
// Visit a node
Node.prototype.visit = function () {
// Recursively go left
if (this.left != null) {
this.left.visit()
}
// Print out value
console.log(this.value)
// Recursively go right
if (this.right != null) {
this.right.visit()
}
}
// Add a node
Node.prototype.addNode = function (n) {
if (n.value < this.value) {
if (this.left == null) {
this.left = n
} else {
this.left.addNode(n)
}
} else if (n.value > this.value) {
if (this.right == null) {
this.right = n
} else {
this.right.addNode(n)
}
}
}
// returns the constructor
return Node
}())
// class Tree
var Tree = (function () {
function Tree () {
// Just store the root
this.root = null
};
// Inorder traversal
Tree.prototype.traverse = function () {
this.root.visit()
}
// Start by searching the root
Tree.prototype.search = function (val) {
const found = this.root.search(val)
if (found === null) {
console.log(val + ' not found')
} else {
console.log('Found:' + found.value)
}
}
// Add a new value to the tree
Tree.prototype.addValue = function (val) {
const n = new Node(val)
if (this.root == null) {
this.root = n
} else {
this.root.addNode(n)
}
}
// returns the constructor
return Tree
}())
// Implementation of BST
var bst = new Tree()
bst.addValue(6)
bst.addValue(3)
bst.addValue(9)
bst.addValue(2)
bst.addValue(8)
bst.addValue(4)
bst.traverse()
bst.search(8)