mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-07 02:05:08 +08:00
Add an algorithm to find Taylor series approximation of exponential f… (#1160)
This commit is contained in:

committed by
GitHub

parent
58671861a5
commit
73bf91d7e1
25
Maths/ExponentialFunction.js
Normal file
25
Maths/ExponentialFunction.js
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
/**
|
||||||
|
* @function exponentialFunction
|
||||||
|
* @description Calculates the n+1 th order Taylor series approximation of exponential function e^x given n
|
||||||
|
* @param {Integer} power
|
||||||
|
* @param {Integer} order - 1
|
||||||
|
* @returns exponentialFunction(2,20) = 7.3890560989301735
|
||||||
|
* @url https://en.wikipedia.org/wiki/Exponential_function
|
||||||
|
*/
|
||||||
|
function exponentialFunction (power, n) {
|
||||||
|
let output = 0
|
||||||
|
let fac = 1
|
||||||
|
if (isNaN(power) || isNaN(n) || n < 0) {
|
||||||
|
throw new TypeError('Invalid Input')
|
||||||
|
}
|
||||||
|
if (n === 0) { return 1 }
|
||||||
|
for (let i = 0; i < n; i++) {
|
||||||
|
output += (power ** i) / fac
|
||||||
|
fac *= (i + 1)
|
||||||
|
}
|
||||||
|
return output
|
||||||
|
}
|
||||||
|
|
||||||
|
export {
|
||||||
|
exponentialFunction
|
||||||
|
}
|
16
Maths/test/ExponentialFunction.test.js
Normal file
16
Maths/test/ExponentialFunction.test.js
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
import { exponentialFunction } from '../ExponentialFunction'
|
||||||
|
|
||||||
|
describe('Tests for exponential function', () => {
|
||||||
|
it('should be a function', () => {
|
||||||
|
expect(typeof exponentialFunction).toEqual('function')
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should throw error for invalid input', () => {
|
||||||
|
expect(() => exponentialFunction(2, -34)).toThrow()
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should return the exponential function of power of 5 and order of 21', () => {
|
||||||
|
const ex = exponentialFunction(5, 20)
|
||||||
|
expect(ex).toBe(148.4131078683383)
|
||||||
|
})
|
||||||
|
})
|
Reference in New Issue
Block a user