Add Fermat Primality Test

This commit is contained in:
arthurvergacas
2021-10-14 15:15:49 -03:00
parent 5f601fac8d
commit 3c2fdf7582
2 changed files with 109 additions and 0 deletions

View File

@ -0,0 +1,19 @@
import { modularExponentiation, fermatPrimeCheck } from '../FermatPrimalityTest'
describe('modularExponentiation', () => {
it('should give the correct output for all exponentiations', () => {
expect(modularExponentiation(38, 220, 221)).toBe(1)
expect(modularExponentiation(24, 220, 221)).toBe(81)
})
})
describe('fermatPrimeCheck', () => {
it('should give the correct output for prime and composite numbers', () => {
expect(fermatPrimeCheck(2, 50)).toBe(true)
expect(fermatPrimeCheck(10, 50)).toBe(false)
expect(fermatPrimeCheck(94286167, 50)).toBe(true)
expect(fermatPrimeCheck(83165867, 50)).toBe(true)
expect(fermatPrimeCheck(13268774, 50)).toBe(false)
expect(fermatPrimeCheck(13233852, 50)).toBe(false)
})
})

View File

@ -0,0 +1,90 @@
/**
* The Fermat primality test is a probabilistic test to determine whether a number is a probable prime. It relies on
* Fermat's Little Theorem, which states that if p is prime and a is not divisible by p, then
*
* a^(p - 1) % p = 1
*
* However, there are certain numbers (so called Fermat Liars) that screw things up;
* if a is one of these liars the equation will hold even though p is composite.
*
* But not everything is lost! It's been proven that at least half of all integers aren't Fermat Liar (these ones called
* Fermat Witnesses). Thus, if we keep testing the primality with random integers, we can achieve higher reliability.
*
* The interesting about all of this is that since half of all integers are Fermat Witnesses, the precision gets really
* high really fast! Suppose that we make the test 50 times: the chance of getting only Fermat Liars in all runs is
*
* 1 / 2^50 = 8.8 * 10^-16 (a pretty small number)
*
* For comparison, the probability of a cosmic ray causing an error to your infalible program is around 1.4 * 10^-15. An
* order of magnitude below!
*
* You can find more about the Fermat primality test and its flaws here:
* https://en.wikipedia.org/wiki/Fermat_primality_test
*/
/**
* Faster exponentiation that capitalize on the fact that we are only interested
* in the modulus of the exponentiation.
*
* Find out more about it here: https://en.wikipedia.org/wiki/Modular_exponentiation
*
* @param {number} base
* @param {number} exponent
* @param {number} modulus
*/
const modularExponentiation = (base, exponent, modulus) => {
if (modulus === 1) return 0 // after all, any x % 1 = 0
let result = 1
base %= modulus // make sure that base < modulus
while (exponent > 0) {
// if exponent is odd, multiply the result by the base
if (exponent % 2 === 1) {
result = (result * base) % modulus
exponent--
} else {
exponent = exponent / 2 // exponent is even for sure
base = (base * base) % modulus
}
}
return result
}
/**
* Test if a given number n is prime or not.
*
* @param {number} n The number to check for primality
* @param {number} numberOfIterations The number of times to apply Fermat's Little Theorem
* @returns True if prime, false otherwise
*/
const fermatPrimeCheck = (n, numberOfIterations) => {
// first check for corner cases
<<<<<<< HEAD
if (n <= 1 || n === 4) return false
=======
if (n <= 1 || n == 4) return false
>>>>>>> 951c7258323a057041c0d128880982ddab303ee5
if (n <= 3) return true // 2 and 3 are included here
for (let i = 0; i < numberOfIterations; i++) {
// pick a random number between 2 and n - 2
<<<<<<< HEAD
const randomNumber = Math.floor(Math.random() * (n - 1 - 2) + 2)
=======
let randomNumber = Math.floor(Math.random() * (n - 1 - 2) + 2)
>>>>>>> 951c7258323a057041c0d128880982ddab303ee5
// if a^(n - 1) % n is different than 1, n is composite
if (modularExponentiation(randomNumber, n - 1, n) !== 1) {
return false
}
}
// if we arrived here without finding a Fermat Witness, this is almost guaranteed
// to be a prime number (or a Carmichael number, if you are unlucky)
return true
}
export { modularExponentiation, fermatPrimeCheck }