mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-06 01:18:23 +08:00
fix: hadnle zeros at the endpoints in BisectionMethod
(#1640)
* fix: hadnle zeros at the endpoints * style: use simpler syntax express polynomials Co-authored-by: appgurueu <34514239+appgurueu@users.noreply.github.com> --------- Co-authored-by: appgurueu <34514239+appgurueu@users.noreply.github.com>
This commit is contained in:
@ -23,7 +23,7 @@ const findRoot = (a, b, func, numberOfIterations) => {
|
|||||||
|
|
||||||
// Bolzano theorem
|
// Bolzano theorem
|
||||||
const hasRoot = (a, b, func) => {
|
const hasRoot = (a, b, func) => {
|
||||||
return func(a) * func(b) < 0
|
return func(a) * func(b) <= 0
|
||||||
}
|
}
|
||||||
if (hasRoot(a, b, func) === false) {
|
if (hasRoot(a, b, func) === false) {
|
||||||
throw Error(
|
throw Error(
|
||||||
@ -45,10 +45,9 @@ const findRoot = (a, b, func, numberOfIterations) => {
|
|||||||
const prod2 = fm * func(b)
|
const prod2 = fm * func(b)
|
||||||
|
|
||||||
// Depending on the sign of the products above, decide which position will m fill (a's or b's)
|
// Depending on the sign of the products above, decide which position will m fill (a's or b's)
|
||||||
if (prod1 > 0 && prod2 < 0) return findRoot(m, b, func, --numberOfIterations)
|
if (prod2 <= 0) return findRoot(m, b, func, --numberOfIterations)
|
||||||
else if (prod1 < 0 && prod2 > 0)
|
|
||||||
return findRoot(a, m, func, --numberOfIterations)
|
return findRoot(a, m, func, --numberOfIterations)
|
||||||
else throw Error('Unexpected behavior')
|
|
||||||
}
|
}
|
||||||
|
|
||||||
export { findRoot }
|
export { findRoot }
|
||||||
|
@ -1,14 +1,7 @@
|
|||||||
import { findRoot } from '../BisectionMethod'
|
import { findRoot } from '../BisectionMethod'
|
||||||
|
|
||||||
test('Equation f(x) = x^2 - 3*x + 2 = 0, has root x = 1 in [a, b] = [0, 1.5]', () => {
|
test('Equation f(x) = x^2 - 3*x + 2 = 0, has root x = 1 in [a, b] = [0, 1.5]', () => {
|
||||||
const root = findRoot(
|
const root = findRoot(0, 1.5, (x) => x ** 2 - 3 * x + 2, 8)
|
||||||
0,
|
|
||||||
1.5,
|
|
||||||
(x) => {
|
|
||||||
return Math.pow(x, 2) - 3 * x + 2
|
|
||||||
},
|
|
||||||
8
|
|
||||||
)
|
|
||||||
expect(root).toBe(0.9990234375)
|
expect(root).toBe(0.9990234375)
|
||||||
})
|
})
|
||||||
|
|
||||||
@ -35,3 +28,12 @@ test('Equation f(x) = sqrt(x) + e^(2*x) - 8*x = 0, has root x = 0.93945851 in [a
|
|||||||
)
|
)
|
||||||
expect(Number(Number(root).toPrecision(8))).toBe(0.93945851)
|
expect(Number(Number(root).toPrecision(8))).toBe(0.93945851)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
test('Equation f(x) = x^3 = 0, has root x = 0.0 in [a, b] = [-1.0, 1.0]', () => {
|
||||||
|
const root = findRoot(-1.0, 1.0, (x) => x ** 3, 32)
|
||||||
|
expect(root).toBeCloseTo(0.0, 5)
|
||||||
|
})
|
||||||
|
|
||||||
|
test('Throws an error when function does not change sign', () => {
|
||||||
|
expect(() => findRoot(-1.0, 1.0, (x) => x ** 2, 10)).toThrowError()
|
||||||
|
})
|
||||||
|
Reference in New Issue
Block a user